Functional connectivity network estimation with an inter-similarity prior for mild cognitive impairment classification

被引:1
|
作者
Li, Weikai [1 ,2 ]
Xu, Xiaowen [3 ]
Jiang, Wei [4 ]
Wang, Peijun [3 ]
Gao, Xin [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci Technol, Nanjing 211106, Peoples R China
[2] Universal Med Imaging Diagnost Ctr, Shanghai 20030, Peoples R China
[3] Tongji Univ, Sch Med, Tongji Hosp, Dept Med Imaging, Shanghai 20065, Peoples R China
[4] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 40074, Peoples R China
来源
AGING-US | 2020年 / 12卷 / 17期
基金
中国国家自然科学基金;
关键词
functional connectivity network; functional magnetic resonance imaging; mild cognitive impairment; Pearson's correlation; partial correlation; AUTISM SPECTRUM DISORDERS; ALZHEIMERS-DISEASE; SMALL-WORLD; BRAIN NETWORKS; WHITE-MATTER; FMRI SIGNALS; PERSPECTIVES; INDIVIDUALS; REGRESSION; EFFICIENCY;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Functional connectivity network (FCN) analysis is an effective technique for modeling human brain patterns and diagnosing neurological disorders such as Alzheimer's disease (AD) and its early stage, Mild Cognitive Impairment. However, accurately estimating biologically meaningful and discriminative FCNs remains challenging due to the poor quality of functional magnetic resonance imaging (fMRI) data and our limited understanding of the human brain. Inspired by the inter-similarity nature of FCNs, similar regions of interest tend to share similar connection patterns. Here, we propose a functional brain network modeling scheme by encoding Inter-similarity prior into a graph-regularization term, which can be easily solved with an efficient optimization algorithm. To illustrate its effectiveness, we conducted experiments to distinguish Mild Cognitive Impairment from normal controls based on their respective FCNs. Our method outperformed the baseline and state-of-the-art methods by achieving an 88.19% classification accuracy. Furthermore, post hoc inspection of the informative features showed that our method yielded more biologically meaningful functional brain connectivity.
引用
收藏
页码:17328 / 17342
页数:15
相关论文
共 50 条
  • [1] Group Similarity Constraint Functional Brain Network Estimation for Mild Cognitive Impairment Classification
    Gao, Xin
    Xu, Xiaowen
    Hua, Xuyun
    Wang, Peijun
    Li, Weikai
    Li, Rui
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [2] Estimation of Brain Functional Connectivity in Patients with Mild Cognitive Impairment
    Farras-Permanyer, Laia
    Mancho-Fora, Nuria
    Montala-Flaquer, Marc
    Gudayol-Ferre, Esteve
    Bearitz Gallardo-Moreno, Geisa
    Zarabozo-Hurtado, Daniel
    Villuendas-Gonzalez, Erwin
    Pero-Cebollero, Maribel
    Guardia-Olmos, Joan
    BRAIN SCIENCES, 2019, 9 (12)
  • [3] Network-Based Cognitive Stimulation can Regulate Functional Connectivity in Mild Cognitive Impairment
    De Marco, M.
    Meneghello, F.
    Rigon, J.
    Pilosio, C.
    Duzzi, D.
    Venneri, A.
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 41 : S19 - S20
  • [4] Neuropsychiatric Symptoms and Functional Connectivity in Mild Cognitive Impairment
    Munro, Catherine E.
    Donovan, Nancy J.
    Guercio, Brendan J.
    Wigman, Sarah E.
    Schultz, Aaron P.
    Amariglio, Rebecca E.
    Rentz, Dorene M.
    Johnson, Keith A.
    Sperling, Reisa A.
    Marshall, Gad A.
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 46 (03) : 727 - 735
  • [5] Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment
    Pineda-Pardo, Jose Angel
    Bruna, Ricardo
    Woolrich, Mark
    Marcos, Alberto
    Nobre, Anna C.
    Maestu, Fernando
    Vidaurre, Diego
    NEUROIMAGE, 2014, 101 : 765 - 777
  • [6] Functional connectivity in mild cognitive impairment with Lewy bodies
    Schumacher, Julia
    Taylor, John-Paul
    Hamilton, Calum A.
    Firbank, Michael
    Donaghy, Paul C.
    Roberts, Gemma
    Allan, Louise
    Durcan, Rory
    Barnett, Nicola
    O'Brien, John T.
    Thomas, Alan J.
    JOURNAL OF NEUROLOGY, 2021, 268 (12) : 4707 - 4720
  • [7] Functional connectivity in mild cognitive impairment with Lewy bodies
    Julia Schumacher
    John-Paul Taylor
    Calum A. Hamilton
    Michael Firbank
    Paul C. Donaghy
    Gemma Roberts
    Louise Allan
    Rory Durcan
    Nicola Barnett
    John T. O’Brien
    Alan J. Thomas
    Journal of Neurology, 2021, 268 : 4707 - 4720
  • [8] Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment
    Zhang, Han
    Giannakopoulos, Panteleimon
    Haller, Sven
    Shen, Dinggang
    Lee, Seong-Whan
    Qiu, Shijun
    NEUROINFORMATICS, 2019, 17 (04) : 547 - 561
  • [9] Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment
    Han Zhang
    Panteleimon Giannakopoulos
    Sven Haller
    Seong-Whan Lee
    Shijun Qiu
    Dinggang Shen
    Neuroinformatics, 2019, 17 : 547 - 561
  • [10] Functional Connectivity Variations in Mild Cognitive Impairment: Associations with Cognitive Function
    Han, S. Duke
    Arfanakis, Konstantinos
    Fleischman, Debra A.
    Leurgans, Sue E.
    Tuminello, Elizabeth R.
    Edmonds, Emily C.
    Bennett, David A.
    JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2012, 18 (01) : 39 - 48