TWO-WEIGHT NORM ESTIMATES FOR SUBLINEAR INTEGRAL OPERATORS IN VARIABLE EXPONENT LEBESGUE SPACES

被引:1
|
作者
Kokilashvili, Vakhtang [1 ,2 ]
Meskhi, Alexander [1 ,3 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
[2] Int Black Sea Univ, GE-0131 Tbilisi, Georgia
[3] Georgian Tech Univ, Fac Informat & Control Syst, Dept Math, Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Sublinear integral operators; maximal operator; singular integrals; fractional integrals; spaces of homogeneous type; variable exponent Lebesgue spaces; two-weight inequality; GENERALIZED LEBESGUE; MAXIMAL FUNCTIONS; SINGULAR-OPERATORS; SOBOLEV EMBEDDINGS; MORREY SPACES; BOUNDEDNESS; INEQUALITIES; CONVOLUTION; POTENTIALS; LP(X);
D O I
10.1556/SScMath.51.2014.3.1290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two-weight norm estimates for sublinear integral operators involving Hardy-Little-wood maximal, Calderon-Zygmund and fractional integral operators in variable exponent Lebesgue spaces are derived. Operators and the space are defined on a quasi-metric measure space with doubling condition. The derived conditions are written in terms of L-p(.) norms and are simultaneously necessary and sufficient for appropriate inequalities for maximal and fractional integral operators mainly in the case when weights are of radial type.
引用
收藏
页码:384 / 406
页数:23
相关论文
共 50 条
  • [1] Potential Operators in Variable Exponent Lebesgue Spaces: Two-Weight Estimates
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Sarwar, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [2] Potential Operators in Variable Exponent Lebesgue Spaces: Two-Weight Estimates
    Vakhtang Kokilashvili
    Alexander Meskhi
    Muhammad Sarwar
    Journal of Inequalities and Applications, 2010
  • [3] Two-weight norm estimates for maximal and Calderon-Zygmund operators in variable exponent Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Sarwar, Muhammad
    GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (03) : 547 - 572
  • [4] Estimates of Fractional Integral Operators on Variable Exponent Lebesgue Spaces
    Tang, Canqin
    Wu, Qing
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [5] Two-Weight Norm Estimates for Multilinear Fractional Integrals in Classical Lebesgue Spaces
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    Fractional Calculus and Applied Analysis, 2015, 18 : 1146 - 1163
  • [6] A characterization of two-weight norm inequalities for multidimensional Hausdorff operators on Lebesgue spaces
    Rovshan Bandaliyev
    Dunya Aliyeva
    Positivity, 2024, 28
  • [7] TWO-WEIGHT NORM ESTIMATES FOR MULTILINEAR FRACTIONAL INTEGRALS IN CLASSICAL LEBESGUE SPACES
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) : 1146 - 1163
  • [8] A characterization of two-weight norm inequalities for multidimensional Hausdorff operators on Lebesgue spaces
    Bandaliyev, Rovshan
    Aliyeva, Dunya
    POSITIVITY, 2024, 28 (02)
  • [9] TWO-WEIGHT NORM INEQUALITIES FOR ROUGH FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
    Ho, Kwok-Pun
    OPUSCULA MATHEMATICA, 2024, 44 (01) : 67 - 77
  • [10] Singular integral operators in some variable exponent Lebesgue spaces
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 375 - 381