The monogenic curvature scale-space

被引:0
|
作者
Zang, Di [1 ]
Sommer, Gerald [1 ]
机构
[1] Univ Kiel, Cognit Syst Grp, Inst Comp Sci & Appl Math, D-24118 Kiel, Germany
来源
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we address the topic of monogenic curvature scale-space. Combining methods of tensor algebra, monogenic signal and quadrature filter, the monogenic curvature signal, as a novel model for intrinsically two-dimensional (i2D) structures, is derived in an algebraically extended framework. It is unified with a scale concept by employing damped spherical harmonics as basis functions. This results in a monogenic curvature scale-space. Local amplitude, phase and orientation, as independent local features, are extracted. In contrast to the Gaussian curvature scale-space, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation in the scale-space, which delivers access to various phase-based applications in computer vision.
引用
收藏
页码:320 / 332
页数:13
相关论文
共 50 条
  • [1] The monogenic scale-space: A unifying approach to phase-based image processing in scale-space
    Felsberg, M
    Sommer, G
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2004, 21 (01) : 5 - 26
  • [2] The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space
    M. Felsberg
    G. Sommer
    [J]. Journal of Mathematical Imaging and Vision, 2004, 21 : 5 - 26
  • [3] GET:: The connection between monogenic scale-space and Gaussian derivatives
    Felsberg, M
    Köthe, U
    [J]. SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 192 - 203
  • [4] An affine resilient curvature scale-space corner detector
    Awrangieb, Mohammad
    Lu, Guojun
    Murshed, Manzur
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 1233 - 1236
  • [5] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Tony Lindeberg
    [J]. Journal of Mathematical Imaging and Vision, 2011, 40 : 36 - 81
  • [6] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Lindeberg, Tony
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 36 - 81
  • [7] Scale-Space Curvature Detection of Retinal Exudates with a Dynamic Threshold
    Soares, Ivo
    Castelo-Branco, Miguel
    Pinheiro, Antonio M. G.
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 523 - 528
  • [8] SHAPE MATCHING BASED ON RECTANGULARIZED CURVATURE SCALE-SPACE MAPS
    Zhou, Wen
    Zhong, Baojiang
    Ma, Kai-Kuang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4230 - 4234
  • [9] The curvature function evolved in scale-space as a representation of biological shapes
    SanchezMarin, FJ
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 1997, 27 (02) : 77 - 85
  • [10] CURVATURE SCALE-SPACE OF OPEN CURVES: THEORY AND SHAPE REPRESENTATION
    Zhong, Baojiang
    Ma, Kai-Kuang
    Yang, Jiwen
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3671 - 3675