Data-driven cost estimation for additive manufacturing in cybermanufacturing

被引:108
|
作者
Chan, Siu L. [1 ]
Lu, Yanglong [1 ]
Wang, Yan [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Data analytics; Big data; Machine learning; LASSO; Elastic net; Additive manufacturing; Cybermanufacturing; BUILD-TIME; MACHINE CONDITION; NEURAL-NETWORKS; FAULT-DETECTION; DESIGN; SYSTEM; CLASSIFICATION; CLOUD; OPTIMIZATION; METHODOLOGY;
D O I
10.1016/j.jmsy.2017.12.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cybermanufacturing is a new paradigm that both manufacturing software and hardware tools are seamlessly integrated by enabling information infrastructure and are accessed as services in cyberspace. This paradigm encourages tool sharing and reuse thus can reduce cost and time in product realization. In this research, a new cost estimation framework is developed based on big data analytics tools so that the manufacturing cost associated with a new job can be estimated based on the similar ones in the past. Manufacturers can use this cost analytics service in their job bidding process, which is currently ad hoc and subjective in industry practice. The new framework is implemented and demonstrated for additive manufacturing, where the similarities of 3D geometry of parts and printing processes are established by identifying relevant features. Machine learning algorithms for dynamic clustering, LASSO and elastic net regressions are applied to feature vectors to predict the cost based on historical data. (C) 2017 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 50 条
  • [1] Data-Driven Additive Manufacturing Constraints for Topology Optimization
    Weiss, Benjamin M.
    Hamel, Joshua M.
    Ganter, Mark A.
    Storti, Duane W.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (02):
  • [2] Data-Driven Additive Manufacturing Constraints for Topology Optimization
    Weiss, Benjamin M.
    Hamel, Joshua M.
    Ganter, Mark A.
    Storti, Duane W.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 2A, 2018,
  • [3] Data-Driven Approaches Toward Smarter Additive Manufacturing
    Tian, Chenxi
    Li, Tianjiao
    Bustillos, Jenniffer
    Bhattacharya, Shonak
    Turnham, Talia
    Yeo, Jingjie
    Moridi, Atieh
    ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (12)
  • [4] Data-driven modeling of thermal history in additive manufacturing
    Roy, Mriganka
    Wodo, Olga
    ADDITIVE MANUFACTURING, 2020, 32
  • [5] Additive Manufacturing: Experiments, Simulations, and Data-Driven Modelling
    Mahmood, Muhammad Arif
    Ur Rehman, Asif
    Khraisheh, Marwan
    Salamci, Metin U.
    Ur Rehman, Rashid
    Sajjad, Uzair
    Ristoscu, Carmen
    Popescu, Andrei C.
    Oane, Mihai
    Mihailescu, Ion N.
    CRYSTALS, 2024, 14 (09)
  • [6] Data-driven stochastic optimization on manifolds for additive manufacturing
    Marmarelis, Myrl G.
    Ghanem, Roger G.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 181
  • [7] A big data-driven framework for sustainable and smart additive manufacturing
    Majeed, Arfan
    Zhang, Yingfeng
    Ren, Shan
    Lv, Jingxiang
    Peng, Tao
    Waqar, Saad
    Yin, Enhuai
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2021, 67
  • [8] Detecting Attacks in CyberManufacturing Systems: Additive Manufacturing Example
    Wu, Mingtao
    Zhou, Heguang
    Lin, Longwang Lucas
    Silva, Bruno
    Song, Zhengyi
    Cheung, Jackie
    Moon, Young
    2017 INTERNATIONAL CONFERENCE ON MECHANICAL, AERONAUTICAL AND AUTOMOTIVE ENGINEERING (ICMAA 2017), 2017, 108
  • [9] Predicting part distortion field in additive manufacturing: a data-driven framework
    Osama Aljarrah
    Jun Li
    Alfa Heryudono
    Wenzhen Huang
    Jing Bi
    Journal of Intelligent Manufacturing, 2023, 34 : 1975 - 1993
  • [10] Predicting part distortion field in additive manufacturing: a data-driven framework
    Aljarrah, Osama
    Li, Jun
    Heryudono, Alfa
    Huang, Wenzhen
    Bi, Jing
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (04) : 1975 - 1993