CO2 sequestration in depleted methane hydrate deposits with excess water

被引:27
|
作者
Song, Yongchen [1 ]
Zhou, Hang [1 ]
Ma, Shihui [1 ]
Liu, Weiguo [1 ]
Yang, Mingjun [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Ocean Energy Utilizat & Energy Conservat, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrate; storage; MH deposit; seepage; water saturation; CARBON-DIOXIDE HYDRATE; GAS-HYDRATE; THERMAL-STIMULATION; GEOLOGICAL MEDIA; PORE-SIZE; STORAGE; INJECTION; DISSOCIATION; RECOVERY; REPLACEMENT;
D O I
10.1002/er.4042
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The recent increase in atmospheric CO2 concentration makes it necessary to investigate new ways to reduce CO2 emissions. Simultaneously, natural gas hydrate mining technology is developing rapidly. The use of depleted methane hydrate (MH) deposits as potential sites for CO2 storage is relatively safe and economical. This method can alleviate the shortage of hydrate displacement gas with CO2. The purpose of this study was to investigate CO2 hydrate formation characteristics during the seepage process-in reservoirs with excess water-and their effect on CO2 storage. The experimental process can be divided into 5 parts: MH formation, water injection, MH dissociation, CO2 hydrate formation, and CO2 hydrate dissociation. Magnetic resonance imaging was employed to monitor the distribution of liquid water, and the effects of different parameters on the formation and dissociation of CO2 hydrates were analyzed. It was found that a state of initial water saturation can effectively control hydrate saturation in artificial MH reservoirs for hydrate reservoirs with excess gas. In the process of CO2 flow, initial water saturation was not the main controlling factor for CO2 hydrate formation. Increasing the flow pressure and reducing the flow rate were beneficial for CO2 hydrate formation. This study is of great significance for advancing the science of CO2 geological storage in the form of deep-sea hydrates.
引用
收藏
页码:2536 / 2547
页数:12
相关论文
共 50 条
  • [1] CO2 sequestration in depleted methane hydrate sandy reservoirs
    Liu, Yu
    Wang, Pengfei
    Yang, Mingjun
    Zhao, Yuechao
    Zhao, Jiafei
    Song, Yongchen
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2018, 49 : 428 - 434
  • [2] CO2/N2 mixture sequestration in depleted natural gas hydrate reservoirs
    Zhou, Hang
    Chen, Bingbing
    Wang, Shenglong
    Yang, Mingjun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 175 : 72 - 82
  • [3] CO2 sequestration in depleted oil reservoirs
    Bossie-Codreanu, D
    Le-Gallo, Y
    Duquerroix, JP
    Doerler, N
    Le Thiez, P
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 403 - 408
  • [4] Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration
    Harpalani, Satya
    Prusty, Basanta K.
    Dutta, Pratik
    ENERGY & FUELS, 2006, 20 (04) : 1591 - 1599
  • [5] Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2
    Deusner, Christian
    Bigalke, Nikolaus
    Kossel, Elke
    Haeckel, Matthias
    ENERGIES, 2012, 5 (07) : 2112 - 2140
  • [6] Numerical analysis of CO2 hydrate growth in a depleted natural gas hydrate formation with free water
    Ahmad, Sheraz
    Li, Yiming
    Li, Xiangfang
    Xia, Wei
    Chen, Zeen
    Ullah, Naeem
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2019, 9 (06): : 1181 - 1201
  • [7] Simulating CO2 Sequestration in a Depleted Gas Reservoir
    Ozkilic, O. I.
    Gumrah, F.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2009, 31 (13) : 1174 - 1185
  • [8] Storage of CO2 as hydrate in depleted gas reservoirs
    Zatsepino, Olga Ye
    Pooladi-Darvish, Mehran
    SPE Reservoir Evaluation and Engineering, 2012, 15 (01): : 98 - 108
  • [9] Storage of CO2 as Hydrate in Depleted Gas Reservoirs
    Zatsepina, Olga Ye.
    Pooladi-Darvish, Mehran
    SPE RESERVOIR EVALUATION & ENGINEERING, 2012, 15 (01) : 98 - 108
  • [10] CO2 hydrate:: Formation and dissociation compared to methane hydrate
    Giavarini, Carlo
    Maccioni, Filippo
    Politi, Monia
    Santarelli, Maria Laura
    ENERGY & FUELS, 2007, 21 (06) : 3284 - 3291