Early properties of concrete with alkali-activated fly ash as partial cement replacement

被引:10
|
作者
Assi, Lateef N. [1 ]
Majdi, Ali [2 ]
Alhamadani, Yasir [3 ]
Ziehl, Paul [4 ]
机构
[1] Al Mustagbal Univ Coll, Dept Res & Sci Studies, Hillah, Iraq
[2] Al Mustagbal Univ Coll, Hillah, Iraq
[3] Minist Higher Educ & Sci Res, Construct & Bldg, Baghdad, Iraq
[4] Univ South Carolina, Dept Civil & Environm Engn, Columbia, SC 29208 USA
关键词
concrete structures; materials technology; sustainability; LOW-CALCIUM FLY; GEOPOLYMER CONCRETE; COMPRESSIVE STRENGTH; IMPROVEMENT;
D O I
10.1680/jcoma.19.00092
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Cement manufacture is one of the reasons for society's increasing carbon dioxide footprint. The development of a sustainable construction material is therefore needed to replace Portland cement fully or partially in building construction applications. Geopolymer concrete is a sustainable cementitious material, which is claimed to reduce carbon dioxide emissions and utilise waste materials such as fly ash, metakaolin and blast-furnace slag. Fly-ash-based geopolymer concrete with an activating solution of a mixture of silica fume, sodium hydroxide and water was investigated. Four Portland cement replacement weight ratios (0%, 5%, 10% and 15% by weight of fly ash) were studied. The effects of the Portland cement replacement on the early geopolymerisation process, compressive strength, modulus of elasticity and Poisson's ratio were investigated. Acoustic emission monitoring results showed that the early geopolymerisation process was enhanced when Portland cement replacement was increased. The compressive strength and modulus of elasticity were significantly increased when the Portland cement ratio increased, while Poisson's ratio was adversely affected.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [1] ALKALI-ACTIVATED FLY ASH CONCRETE (CONCRETE WITHOUT CEMENT)
    Mikoc, Miroslav
    Bjelobrk, Ivan
    Korajac, Josip
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2011, 18 (01): : 99 - 102
  • [2] Engineering properties of alkali-activated fly ash concrete
    Fernández-Jiménez, AM
    Palomo, A
    López-Hombrados, C
    ACI MATERIALS JOURNAL, 2006, 103 (02) : 106 - 112
  • [3] Alkali-activated cement using slags and fly ash
    Rios, S.
    Viana da Fonseca, A.
    Pinheiro, C.
    Nunes, S.
    Cristelo, N.
    WASTES - SOLUTIONS, TREATMENTS AND OPPORTUNITIES II, 2018, : 161 - 166
  • [4] Material Properties of Structurally Viable Alkali-Activated Fly Ash Concrete
    Radlinska, Aleksandra
    Yost, Joseph R.
    Salera, Michael J.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2013, 25 (10) : 1456 - 1464
  • [5] Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete
    Mosleh, Youssef A.
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 65 - 76
  • [6] PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH
    You, Duo
    Fang, Yonghao
    Zhu, Chenhui
    Gong, Yongfan
    Gu, Yamin
    CERAMICS-SILIKATY, 2016, 60 (01) : 63 - 67
  • [7] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    沈卫国
    Journal of Wuhan University of Technology(Materials Science), 2011, (01) : 121 - 125
  • [8] Magnesia modification of alkali-activated slag fly ash cement
    Weiguo Shen
    Yiheng Wang
    Tao Zhang
    Mingkai Zhou
    Jiasheng Li
    Xiaoyu Cui
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26 : 121 - 125
  • [10] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    Shen Weiguo
    Wang Yiheng
    Zhang Tao
    Zhou Mingkai
    Li Jiasheng
    Cui Xiaoyu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (01): : 121 - 125