Exact solutions of the one-dimensional modified complex Ginzburg-Landau equation

被引:11
|
作者
Yomba, E
Kofané, TC
机构
[1] Univ Ngaoundere, Fac Sci, Dept Phys, Ngaoundere, Cameroon
[2] Univ Yaounde, Fac Sci, Dept Phys, Yaounde, Cameroon
关键词
D O I
10.1016/S0960-0779(02)00117-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The one-dimensional modified complex Ginzburg-Landau (MCGL) equation ipsi(t) + ppsi(xx) + q\psi\(2)psi = c psi(x)psi*(x)/psi* + ddel(2)[(psipsi*)(1/2)](psi/psi*)(1/2) + igammapsi is studied using a method derived from the Painleve test for integrability and Hirota's bilinear formalism. Exact solutions are expressed in terms of pulses, periodic unbounded waves, fronts, sources and sinks. The degeneracies of the MCGL equation have been examined as well as several of their solutions. (C) 2002 Published by Elsevier Science Ltd.
引用
下载
收藏
页码:187 / 199
页数:13
相关论文
共 50 条
  • [1] Exact solutions of the one-dimensional generalized modified complex Ginzburg-Landau equation
    Yomba, E
    Kofane, TC
    CHAOS SOLITONS & FRACTALS, 2003, 17 (05) : 847 - 860
  • [2] EXACT-SOLUTIONS OF THE ONE-DIMENSIONAL QUINTIC COMPLEX GINZBURG-LANDAU EQUATION
    MARCQ, P
    CHATE, H
    CONTE, R
    PHYSICA D, 1994, 73 (04): : 305 - 317
  • [3] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122
  • [4] Elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation
    Vernov, S. Yu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (32) : 9833 - 9844
  • [5] Turbulence in the one-dimensional complex ginzburg-landau equation
    1600, Polish Acad of Sciences, Warszawa, Poland (87):
  • [6] TURBULENCE IN THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION
    ZUBRZYCKI, A
    ACTA PHYSICA POLONICA A, 1995, 87 (06) : 925 - 932
  • [7] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [8] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [9] Stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 368 - 372
  • [10] Amplitude wave in one-dimensional complex Ginzburg-Landau equation
    Ling-Ling, Xie
    Jia-Zhen, Gao
    Wei-Miao, Xie
    Ji-Hua, Gao
    CHINESE PHYSICS B, 2011, 20 (11)