Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells

被引:0
|
作者
O'Connor, Shannon K. [1 ,2 ,3 ]
Katz, Dakota B. [1 ,2 ,4 ,5 ]
Oswald, Sara J. [1 ,2 ,5 ]
Groneck, Logan [1 ,2 ,4 ]
Guilak, Farshid [1 ,2 ,4 ,5 ]
机构
[1] Washington Univ, Dept Orthopaed Surg, St Louis, MO 63110 USA
[2] Shriners Hosp Children, St Louis, MO USA
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
[4] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
[5] Washington Univ, Ctr Regenerat Med, Couch Biomed Res Bldg,Room 3121,Campus Box 8233, St Louis, MO 63110 USA
关键词
chondrogenic; osteogenic; iPSC; tissue engineering; organoid; scaffold-free; osteoarthritis; ENDOCHONDRAL OSSIFICATION; STROMAL CELLS; BONE ORGAN; CARTILAGE; CHONDROCYTE; DIFFERENTIATION; TRANSPLANTATION; CHONDROGENESIS; TUMORIGENICITY; OSTEOBLASTS;
D O I
10.1089/ten.tea.2020.0273
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Impact statement The regeneration of integrated articular cartilage and bone tissues from a single cell source has been a challenge in the field of osteochondral tissue engineering and osteoarthritis disease modeling. The goal of this study was to develop an osteochondral organoid system using a single murine induced pluripotent stem cell (iPSC) source in a scaffold-free system and to determine whether differentiated iPSCs retain the potential to undergo reinduction of pluripotency. Our findings indicate that sequential differentiation into chondrogenic and osteogenic lineages can be used to develop osteochondral organoids, and encapsulation within a cartilaginous matrix prevents the reinduction of pluripotency in differentiated iPSCs. Osteoarthritis is a debilitating joint disease that is characterized by pathologic changes in both cartilage and bone, potentially involving cross talk between these tissues that is complicated by extraneous factors that are difficult to study in vivo. To create a model system of these cartilage-bone interactions, we developed an osteochondral organoid from murine induced pluripotent stem cells (iPSCs). Using this approach, we grew organoids from a single cell type through time-dependent sequential exposure of growth factors, namely transforming growth factor beta-3 and bone morphogenic protein 2, to mirror bone development through endochondral ossification. The result is a cartilaginous region and a calcified bony region comprising an organoid with the potential for joint disease drug screening and investigation of genetic risk in a patient or disease-specific manner. Furthermore, we also investigated the possibility of the differentiated cells within the organoid to revert to a pluripotent state. It was found that while the cells themselves maintain the capacity for reinduction of pluripotency, encapsulation in the newly formed 3D matrix prevents this process from occurring, which could have implications for future clinical use of iPSCs.
引用
下载
收藏
页码:1099 / 1109
页数:11
相关论文
共 50 条
  • [1] Cornea organoids from human induced pluripotent stem cells
    Foster, James W.
    Wahlin, Karl
    Adams, Sheila M.
    Birk, David E.
    Zack, Donald J.
    Chakravarti, Shukti
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Cornea organoids from human induced pluripotent stem cells
    James W. Foster
    Karl Wahlin
    Sheila M. Adams
    David E. Birk
    Donald J. Zack
    Shukti Chakravarti
    Scientific Reports, 7
  • [3] Generating minicorneal organoids from human induced pluripotent stem cells
    Susaimanickam, Praveen Joseph
    Maddileti, Savitri
    Pulimamidi, Vinay Kumar
    Boyinpally, Sreedhar Rao
    Naik, Ramavat Ravinder
    Naik, Milind N.
    Reddy, Geereddy Bhanuprakash
    Sangwan, Virender Singh
    Mariappan, Indumathi
    DEVELOPMENT, 2017, 144 (13): : 2338 - 2351
  • [4] Generating Kidney Organoids in Suspension from Induced Pluripotent Stem Cells
    Gao, Langping
    Wang, Yue
    Wang, Gang
    Wu, Hangdi
    Yan, Qingtao
    Wang, Jingjing
    Liu, Fei
    Fu, Haidong
    Li, Wei
    Hu, Lidan
    Mao, Jianhua
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (199): : 1 - 13
  • [5] Generation of hepatobiliary organoids from human induced pluripotent stem cells
    Wu, Fenfang
    Wu, Di
    Ren, Yong
    Huang, Yuhua
    Feng, Bo
    Zhao, Nan
    Zhang, Taotao
    Chen, Xiaoni
    Chen, Shangwu
    Xu, Anlong
    JOURNAL OF HEPATOLOGY, 2019, 70 (06) : 1145 - 1158
  • [6] Differentiation of induced pluripotent stem cells into renal organoids
    Cakiroglu, Figen
    Thomitzek, Antonia
    Ralfs, Philipp
    Rohwedel, Juergen
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2019, 34 : 642 - 642
  • [7] Differentiating Induced Pluripotent Stem Cells Into Cerebral Organoids
    Chang, Yu-Rei R.
    Mead, Ivy
    Pendergraft, Sam
    Wagoner, Ashley
    Bishop, Colin
    TISSUE ENGINEERING PART A, 2014, 20 : S134 - S134
  • [8] Generating ventral spinal organoids from human induced pluripotent stem cells
    Hor, Jin-Hui
    Ng, Shi-Yan
    HUMAN PLURIPOTENT STEM CELL DERIVED ORGANOID MODELS, 2020, 159 : 257 - 277
  • [9] Differentiating visceral sensory ganglion organoids from induced pluripotent stem cells
    Kyusik Ahn
    Hwee-Seon Park
    Sieun Choi
    Hojeong Lee
    Hyunjung Choi
    Seok Beom Hong
    Jihui Han
    Jong Won Han
    Jinchul Ahn
    Jaehoon Song
    Kyunghyuk Park
    Bukyung Cha
    Minseop Kim
    Hui-Wen Liu
    Hyeonggyu Song
    Sang Jeong Kim
    Seok Chung
    Jong-Il Kim
    Inhee Mook-Jung
    Nature Methods, 2024, 21 (11) : 2135 - 2146
  • [10] Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells
    Huang, Wei-Kai
    Wong, Samuel Zheng Hao
    Pather, Sarshan R.
    Nguyen, Phuong T. T.
    Zhang, Feng
    Zhang, Daniel Y.
    Zhang, Zhijian
    Lu, Lu
    Fang, Wanqi
    Chen, Luyun
    Fernandes, Analiese
    Su, Yijing
    Song, Hongjun
    Ming, Guo-Li
    CELL STEM CELL, 2021, 28 (09) : 1657 - +