A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems

被引:2
|
作者
Lu, Zuliang [1 ,2 ]
Huang, Xiao [3 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
[3] Chongqing Three Gorges Univ, Coll Elect & Informat Engn, Chongqing 404000, Peoples R China
基金
美国国家科学基金会;
关键词
APPROXIMATION; SUPERCONVERGENCE; CONVERGENCE;
D O I
10.1155/2014/547490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to investigate the discretization of general linear hyperbolic convex optimal control problems by using the mixed finite element methods. The state and costate are approximated by the k order (k >= 0) Raviart-Thomas mixed finite elements and the control is approximated by piecewise polynomials of order k. By applying the elliptic projection operators and Gronwall's lemma, we derive a priori error estimates of optimal order for both the coupled state and the control approximation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A priori error estimates of mixed finite element methods for general semilinear elliptic optimal control problems
    Lu Z.
    Chen Y.
    [J]. Computational Mathematics and Modeling, 2013, 24 (1) : 114 - 135
  • [2] Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
    Yanping Chen
    Yunqing Huang
    Wenbin Liu
    Ningning Yan
    [J]. Journal of Scientific Computing, 2010, 42 : 382 - 403
  • [3] Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
    Chen, Yanping
    Huang, Yunqing
    Liu, Wenbin
    Yan, Ningning
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) : 382 - 403
  • [4] A priori error estimates of mixed finite element methods for nonlinear quadratic convex optimal control problem
    Zhang, H. W.
    Lu, Z. L.
    [J]. 2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 1 - +
  • [5] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914
  • [6] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    LUO XianBing
    CHEN YanPing
    HUANG YunQing
    [J]. Science China Mathematics, 2013, 56 (05) : 902 - 915
  • [7] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    XianBing Luo
    YanPing Chen
    YunQing Huang
    [J]. Science China Mathematics, 2013, 56 : 901 - 914
  • [8] A PRIORI ERROR ESTIMATES OF FINITE VOLUME METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Feng, Yuming
    Lu, Zuliang
    Cao, Longzhou
    Li, Lin
    Zhang, Shuhua
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [9] A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
    Lu, Zuliang
    Chen, Yanping
    Huang, Yunqing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [10] A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
    Zuliang Lu
    Yanping Chen
    Yunqing Huang
    [J]. Journal of Inequalities and Applications, 2012