Handling missing birthdates in marginal regression analysis with recurrent events

被引:1
|
作者
Pietrosanu, Matthew [1 ]
Rosychuk, Rhonda J. [2 ,3 ]
Hu, X. Joan [4 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[2] Univ Alberta, Dept Pediat, Edmonton, AB, Canada
[3] Women & Childrens Hlth Res Inst, Edmonton, AB, Canada
[4] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Administrative health database; Birthdate distribution; Pediatric mental health care; Sample size; Simulation study; TIME-DEPENDENT COEFFICIENTS; SERVICES; RETURN; CHILD;
D O I
10.1080/03610918.2018.1554106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In attempt to provide a practical guide to handling missing birthdate information, this paper examines the strategy proposed by Hu and Rosychuk (2016) for estimating age-varying effects in a marginal regression analysis of recurrent event times. We conduct empirical studies based on the same dataset that motivated Hu and Rosychuk's research and explore how analysis outcomes differ when using different distributions for missing birthdates in situations with different sample sizes. Our studies show that Hu and Rosychuk's assumption of uniformly-distributed birthdates is an appropriate and computationally efficient solution to restricted birthdate information with a reasonably large sample.
引用
收藏
页码:142 / 152
页数:11
相关论文
共 50 条
  • [21] A critical look at methods for handling missing covariates in epidemiologic regression analyses
    Greenland, S
    Finkle, WD
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (12) : 1255 - 1264
  • [22] Using informative priors for handling missing data problem in Cox regression
    Alkan, Nesrin
    Terzi, Yuksel
    Cengiz, M. Ali
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7614 - 7623
  • [23] Clinical Research: A Novel Approach to Regression Substitution for Handling Missing Data
    Cleophas, Eugene P. E. M.
    Cleophas, Ton J.
    AMERICAN JOURNAL OF THERAPEUTICS, 2013, 20 (05) : 514 - 519
  • [24] Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why
    Leyrat, Clemence
    Carpenter, James R.
    Bailly, Sebastien
    Williamson, Elizabeth J.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (04) : 663 - 672
  • [25] Semiparametric marginal regression for clustered competing risks data with missing cause of failure
    Zhou, Wenxian
    Bakoyannis, Giorgos
    Zhang, Ying
    Yiannoutsos, Constantin T.
    BIOSTATISTICS, 2022,
  • [26] Semiparametric marginal regression for clustered competing risks data with missing cause of failure
    Zhou, Wenxian
    Bakoyannis, Giorgos
    Zhang, Ying
    Yiannoutsos, Constantin T.
    BIOSTATISTICS, 2023, 24 (03) : 795 - 810
  • [27] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [28] Handling missing values in multiple factor analysis
    Husson, Francois
    Josse, Julie
    FOOD QUALITY AND PREFERENCE, 2013, 30 (02) : 77 - 85
  • [29] HANDLING MISSING VALUES IN REPEATED MEASURES ANALYSIS
    SANATHANAN, LP
    GAGNON, R
    LUE, JC
    AMERICAN STATISTICAL ASSOCIATION 1988 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1988, : 241 - 242
  • [30] Semiparametric varying-coefficient regression analysis of recurrent events with applications to treatment switching
    Li, Yang
    Qi, Li
    Sun, Yanqing
    STATISTICS IN MEDICINE, 2018, 37 (27) : 3959 - 3974