A note on the notion of geometric rough paths

被引:34
|
作者
Friz, Peter
Victoir, Nicolas
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1007/s00440-005-0487-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use simple sub-Riemannian techniques to prove that every weak geometric p-rough path (a geometric p-rough path in the sense of [20]) is the limit in sup-norm of a sequence of canonically lifted smooth paths, uniformly bounded in p-variation, thus clarifying the two different definitions of a geometric p-rough path. Our proofs are sufficiently general to include the case of Holder- and modulus-type regularity. This allows us to extend a few classical results on Holder-spaces and p -variation spaces to the non-commutative setting necessary for the theory of rough paths. As an application, we give a precise description of the support of Enhanced Fractional Brownian Motion, and prove a conjecture by Ledoux et al.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [1] A note on the notion of geometric rough paths
    Peter Friz
    Nicolas Victoir
    Probability Theory and Related Fields, 2006, 136 : 395 - 416
  • [2] Geometric foundations of rough paths
    Friz, Peter
    Gassiat, Paul
    GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 171 - 210
  • [3] A combinatorial approach to geometric rough paths and their controlled paths
    Cass, Thomas
    Driver, Bruce K.
    Litterer, Christian
    Ferrucci, Emilio Rossi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 936 - 981
  • [4] Geometric versus non-geometric rough paths
    Hairer, Martin
    Kelly, David
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 207 - 251
  • [5] On the integration of weakly geometric rough paths
    Cass, Thomas
    Driver, Bruce K.
    Lim, Nengli
    Litterer, Christian
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (04) : 1505 - 1524
  • [6] Renormalisation from non-geometric to geometric rough paths
    Bruned, Yvain
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 1078 - 1090
  • [7] Non-geometric rough paths on manifolds
    Armstrong, John
    Brigo, Damiano
    Cass, Thomas
    Ferrucci, Emilio Rossi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 756 - 817
  • [8] CHARACTERISTIC FUNCTIONS OF MEASURES ON GEOMETRIC ROUGH PATHS
    Chevyrev, Ilya
    Lyons, Terry
    ANNALS OF PROBABILITY, 2016, 44 (06): : 4049 - 4082
  • [9] An isomorphism between branched and geometric rough paths
    Boedihardjo, Horatio
    Chevyrev, Ilya
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 1131 - 1148
  • [10] Geometric rough paths on infinite dimensional spaces
    Grong, Erlend
    Nilssen, Torstein
    Schmeding, Alexander
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 : 151 - 178