Galerkin approximation of dynamical quantities using trajectory data

被引:53
|
作者
Thiede, Erik H. [1 ,2 ]
Giannakis, Dimitrios [3 ]
Dinner, Aaron R. [1 ,2 ]
Weare, Jonathan [3 ]
机构
[1] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 150卷 / 24期
基金
美国国家卫生研究院;
关键词
MARKOV STATE MODELS; TRANSITION-PATH THEORY; VARIATIONAL APPROACH; MOLECULAR-DYNAMICS; CONFORMATIONAL DYNAMICS; WEIGHTED-ENSEMBLE; RELAXATION MODES; FOLDING PATHWAYS; KINETICS; SIMULATIONS;
D O I
10.1063/1.5063730
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to the estimation of dynamical quantities using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting the system's dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of increasing the lag time. Published under license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On synchronization of a forced delay dynamical system via the Galerkin approximation
    Ghosh, Dibakar
    Saha, Papri
    Chowdhury, A. Roy
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (06) : 928 - 941
  • [2] Calculation of two-particle quantities in the typical medium dynamical cluster approximation
    Zhang, Y.
    Zhang, Y. F.
    Yang, S. X.
    Tam, K. -M.
    Vidhyadhiraja, N. S.
    Jarrell, M.
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [3] Spectral approximation using iterated discrete Galerkin method
    Kulkarni, RP
    Gnaneshwar, N
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2002, 23 (1-2) : 91 - 104
  • [4] Some results on the diffuse approximation using Galerkin method
    Gavete, L
    Falcon, S
    Ruiz, A
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 499 - 505
  • [5] Trajectory Generation for Quadrotors using Galerkin Projection and Fuzzy Inference
    Tian Yuan-yuan
    Wu Huni-Ning
    Feng Shuang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 5693 - 5698
  • [6] On nonlinear Galerkin approximation
    Wang, BX
    Shi, K
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (01) : 23 - 35
  • [7] ON NONLINEAR GALERKIN APPROXIMATION
    B.X. Wang (Institute of Applied Physics and Computational Mathematics
    Journal of Computational Mathematics, 1997, (01) : 23 - 35
  • [8] Dynamical community detection and spatiotemporal analysis in multilayer spatial interaction networks using trajectory data
    Jia, Tao
    Cai, Chenxi
    Li, Xin
    Luo, Xi
    Zhang, Yuanyu
    Yu, Xuesong
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2022, 36 (09) : 1719 - 1740
  • [9] Gait trajectory optimization using approximation functions
    Saidouni, T
    Bessonnet, G
    CLIMBING AND WALKING ROBOTS, 2002, : 709 - 716
  • [10] DYNAMICAL SYMMETRIES AND CONSERVED QUANTITIES
    LUTZKY, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (07): : 973 - 981