The photoelectric catalytic reduction of CO2 to methanol on CdSeTe NSs/TiO2 NTs

被引:45
|
作者
Li, Peiqiang [1 ]
Zhang, Jun [1 ]
Wang, Huying [1 ]
Jing, Hua [1 ]
Xu, Jinfeng [1 ]
Sui, Xiaona [1 ]
Hu, Haitao [1 ]
Yin, Hongzong [1 ]
机构
[1] Shandong Agr Univ, Coll Chem & Mat Sci, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
TIO2; NANOPARTICLES; NANOTUBE ARRAYS; CARBON-DIOXIDE; HYDROGENATION; CONVERSION; FUELS; GAP;
D O I
10.1039/c3cy00978e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The CdSeTe nanosheet (CdSeTe NS)/TiO2 nanotube (TiO2 NT) photoelectrocatalyst was obtained by the hydrothermal method by loading CdSeTe NSs onto TiO2 NTs which were prepared by an anodic oxidation method. The SEM and TEM results show that CdSeTe had a flaky structure with a large size of 300-400 nm and a small size of about 100 nm, which distributed on the TiO2 NT surface uniformly. The HRTEM and XRD characterization revealed that the CdSeTe NSs grew along the (100) and (002) orientations. Measured by UV-vis DRS and XPS, the energy band gap of the TiO2 NTs was narrowed from 3.20 eV to 1.48 eV by the introduction of the CdSeTe NSs, of which the conduction band and valence band are located at -0.46 eV and 1.02 eV, respectively. In the photoelectrocatalytic reduction CO2 process, the current density had a significant improvement after the decoration with the CdSeTe NSs, increasing from 0.31 mA cm(-2) to 4.50 mA cm(-2) at -0.8 V. Methanol was the predominant photoelectrocatalytic reduction product identified by chromatography, and it reached 1166.77 mu mol L-1 after 5 h. In addition, the mechanism of the high efficiency photoelectrocatalytic reduction of CO2 to methanol was explained from the following aspects: energy band matching, high efficiency electron transmission and the stability of the catalyst.
引用
收藏
页码:1070 / 1077
页数:8
相关论文
共 50 条
  • [1] CdSeTe NSs/TiO2 NTs Photoelectric Catalytic Reduction of CO2
    Jing Hua
    Wang Huying
    Xu Jinfeng
    Sui Xiaona
    Hu Haitao
    Li Peiqiang
    Yin Hongzong
    [J]. ACTA CHIMICA SINICA, 2013, 71 (03) : 421 - 426
  • [2] CdSeTe NSs/TiO2 NTs的制备及其光电催化还原CO2的应用
    井华
    王祜英
    徐金凤
    睢晓娜
    胡海涛
    李培强
    尹洪宗
    [J]. 化学学报, 2013, 71 (03) : 421 - 426
  • [3] Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes
    Qiu Jian-Ping
    Tong Yi-Wen
    Zhao De-Ming
    He Zhi-Qiao
    Chen Jian-Meng
    Song Shuang
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (07) : 1411 - 1420
  • [4] Photo reduction of CO2 to methanol via TiO2 photocatalyst
    Wu, JCS
    Lin, HM
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2005, 7 (03) : 115 - 119
  • [5] Photoelectrochemical Reduction of CO2 in Methanol with TiO2 Photoanode and Metal Cathode
    Yamamoto, Tatsuhiko
    Katsumata, Hideyuki
    Suzuki, Tohru
    Kaneco, Satoshi
    [J]. PHOTOCATALYSTS, PHOTOELECTROCHEMICAL CELLS, AND SOLAR FUELS 7, 2017, 75 (50): : 31 - 37
  • [6] Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films
    Ramesha, Ganganahalli K.
    Brennecke, Joan F.
    Kamat, Prashant V.
    [J]. ACS CATALYSIS, 2014, 4 (09): : 3249 - 3254
  • [7] Methanol production from CO2 reduction over Ni/TiO2 catalyst
    Athikaphan, Pakpoom
    Neramittagapong, Sutasinee
    Assawasaengrat, Pornsawan
    Neramittagapong, Arthit
    [J]. ENERGY REPORTS, 2020, 6 : 1162 - 1166
  • [8] Nb-Doped TiO2 Photocatalysts Used to Reduction of CO2 to Methanol
    Nogueira, M. V.
    Lustosa, G. M. M. M.
    Kobayakawa, Y.
    Kogler, W.
    Ruiz, M.
    Monteiro Filho, E. S.
    Zaghete, M. A.
    Perazolli, L. A.
    [J]. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [9] Photocatalytic Reduction of CO2 to Methanol by Cu2O/TiO2 Heterojunctions
    Cheng, S. -p.
    Wei, L. -w.
    Wang, H. -Paul
    [J]. SUSTAINABILITY, 2022, 14 (01)
  • [10] Worm-like InP/TiO2 NTs heterojunction with unmatched energy band photo-enhanced electrocatalytic reduction of CO2 to methanol
    Li, Peigiang
    Sui, Xiaona
    Xu, Jinfeng
    Jing, Hua
    Wu, Chenxiao
    Peng, Hui
    Lu, Jing
    Yin, Hongzong
    [J]. CHEMICAL ENGINEERING JOURNAL, 2014, 247 : 25 - 32