On specific stability bounds for linear multiresolution schemes based on piecewise polynomial Lagrange interpolation

被引:7
|
作者
Amat, Sergio [1 ]
Donat, Rosa [2 ]
Carlos Trillo, J. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ Valencia, Dept Matemat Aplicada, E-46003 Valencia, Spain
关键词
Stability; Linear multiresolution; Piecewise Lagrange interpolation;
D O I
10.1016/j.jmaa.2009.04.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Deslauriers-Dubuc symmetric interpolation process can be considered as an interpolatory prediction scheme within Harten's framework. In this paper we express the Deslauriers-Dubuc prediction operator as a combination of either second order or first order differences. Through a detailed analysis of certain contractivity properties, we arrive to specific l(infinity)-stability bounds for the multiresolution transform. A variety of tests indicate that these l(infinity) bounds are closer to numerical estimates than those obtained with other approaches. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
  • [1] Optimal bounds for a Lagrange interpolation inequality for piecewise linear continuous finite elements in two space dimensions
    Muhamadiev, Ergash
    Nazarov, Murtazo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 940 - 955
  • [2] THE NUMERICAL STABILITY OF EVALUATION SCHEMES FOR POLYNOMIALS BASED ON THE LAGRANGE INTERPOLATION FORM
    RACK, HJ
    REIMER, M
    [J]. BIT, 1982, 22 (01): : 101 - 107
  • [3] Using Piecewise Hashing and Lagrange Interpolation Polynomial to Preserve Electronic Evidence
    Song, Xiuli
    Deng, Hongyao
    Xiong, Zhihai
    [J]. ADVANCES IN INFORMATION TECHNOLOGY AND EDUCATION, PT I, 2011, 201 : 472 - +
  • [4] LAGRANGE INTERPOLATION SET ALONG LINEAR PIECEWISE ALGEBRAIC CURVES
    Wang, Ren-Hong
    Wang, Shao-Fan
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2009, 7 (01) : 165 - 174
  • [5] Sharp error bounds for piecewise linear interpolation of planar curves
    Degen, W. L. F.
    [J]. COMPUTING, 2007, 79 (2-4) : 143 - 151
  • [6] Sharp error bounds for piecewise linear interpolation of planar curves
    W. L. F. Degen
    [J]. Computing, 2007, 79 : 143 - 151
  • [7] Almost linear VC dimension bounds for piecewise polynomial networks
    Bartlett, PL
    Maiorov, V
    Meir, R
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 190 - 196
  • [8] A Group Authentication Scheme based on Lagrange Interpolation Polynomial
    Li, Shi
    Doh, Inshil
    Chae, Kijoon
    [J]. 2016 10TH INTERNATIONAL CONFERENCE ON INNOVATIVE MOBILE AND INTERNET SERVICES IN UBIQUITOUS COMPUTING (IMIS), 2016, : 386 - 391
  • [9] Precise integration methods based on Lagrange piecewise interpolation polynomials
    Wang, Meng-Fu
    Au, F. T. K.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (07) : 998 - 1014
  • [10] Almost linear VC-dimension bounds for piecewise polynomial networks
    Bartlett, PL
    Maiorov, V
    [J]. NEURAL COMPUTATION, 1998, 10 (08) : 2159 - 2173