Multi and Hyperspectral UAV Remote Sensing: Grapevine Phylloxera Detection in Vineyards

被引:0
|
作者
Vanegas, Fernando [1 ]
Bratanov, Dmitry [1 ]
Weiss, John [2 ]
Powell, Kevin [3 ,4 ]
Gonzalez, Felipe [1 ]
机构
[1] Queensland Univ Technol, 2 George St, Brisbane, Qld 4000, Australia
[2] Govt Victoria DEDJTR, Dept Econ Dev Jobs Transport & Resources, Melbourne, Vic, Australia
[3] DEDJTR, Rutherglen, Vic, Australia
[4] Sugar Res Australia, Meringa, Qld 4865, Australia
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes field trials of Unmanned Aerial Vehicles (UAV) integrated with advanced digital hyperspectral and multispectral sensors to increase the efficiency of existing surveillance practices (human inspectors and insect traps) and application to detect a known endemic biosecurity pest (grape phylloxera) in Victorian vineyards. We evaluated airborne RGB, multi and hyperspectral imagery at two different vineyards with multiple grapevine varieties, in two separate time periods and under different levels of phylloxera infestation. The methods used to incorporate the sensors to the UAV, the flight operations and the processing workflow of the datasets from each imagery type are described. The ultimate aim of this study is to create an integrated methodology for collecting and processing multi and hyperspectral data with the purpose of remote sensing different variables in different applications such as, in this case, plant biosecurity. The development of a methodology for the collection and analysis of airborne multi and hyperspectral imagery would provide scientists with reliable data collection protocols and faster processing techniques to achieve different remote sensing objectives.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hyperspectral remote sensing of grapevine drought stress
    M. Zovko
    U. Žibrat
    M. Knapič
    M. Bubalo Kovačić
    D. Romić
    [J]. Precision Agriculture, 2019, 20 : 335 - 347
  • [2] Hyperspectral remote sensing of grapevine drought stress
    Zovko, M.
    Zibrat, U.
    Knapic, M.
    Kovacic, M. Bubalo
    Romic, D.
    [J]. PRECISION AGRICULTURE, 2019, 20 (02) : 335 - 347
  • [3] Insights into the early detection of grapevine Phylloxera from in situ hyperspectral data
    Renzullo, L. J.
    Blanchfield, A. L.
    Powell, K. S.
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL GRAPEVINE PHYLLOXERA SYMPOSIUM, 2007, (733): : 59 - +
  • [4] Evaluating the potential of high-resolution hyperspectral UAV imagery for grapevine viral disease detection in Australian vineyards
    Wang, Yeniu Mickey
    Ostendorf, Bertram
    Pagay, Vinay
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [5] Fungal infections of grapevine roots in phylloxera-infested vineyards
    Granett, J
    Omer, AD
    Pessereau, P
    Walker, MA
    [J]. VITIS, 1998, 37 (01) : 39 - 42
  • [6] Detection of Citrus Huanglongbing Based on Multi-Input Neural Network Model of UAV Hyperspectral Remote Sensing
    Deng, Xiaoling
    Zhu, Zihao
    Yang, Jiacheng
    Zheng, Zheng
    Huang, Zixiao
    Yin, Xianbo
    Wei, Shujin
    Lan, Yubin
    [J]. REMOTE SENSING, 2020, 12 (17)
  • [7] Remote sensing detection of nutrient uptake in vineyards using narrow-band hyperspectral imagery
    Gil-Perez, B.
    Zarco-Tejada, P. J.
    Correa-Guimaraes, A.
    Relea-Gangas, E.
    Navas-Gracia, L. M.
    Hernandez-Navarro, S.
    Sanz-Requena, J. F.
    Berjon, A.
    Martin-Gil, J.
    [J]. VITIS, 2010, 49 (04) : 167 - 173
  • [8] Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards
    MacDonald, Sarah L.
    Staid, Matthew
    Staid, Melissa
    Cooper, Monica L.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 130 : 109 - 117
  • [9] UAV BASED HYPERSPECTRAL REMOTE SENSING AND CNN FOR VEGETATION CLASSIFICATION
    Sankararao, Adduru U. G.
    Rajalakshmi, P.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7737 - 7740
  • [10] Water Turbidity Retrieval Based on UAV Hyperspectral Remote Sensing
    Cui, Mengying
    Sun, Yonghua
    Huang, Chen
    Li, Mengjun
    [J]. WATER, 2022, 14 (01)