Synergy of vanadia and ceria in the reaction mechanism of low-temperature selective catalytic reduction of NOx by NH3

被引:29
|
作者
Hu, Wenshuo [1 ]
Zou, Renzhi [1 ]
Dong, Yi [1 ]
Zhang, Shuo [1 ]
Song, Hao [1 ]
Liu, Shaojun [1 ]
Zheng, Chenghang [1 ]
Nova, Isabella [2 ]
Tronconi, Enrico [2 ]
Gao, Xiang [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, 38 Zheda Rd, Hangzhou 310027, Peoples R China
[2] Politecn Milan, Dipartimento Energia, Lab Catalysis & Catalyt Proc, Via La Masa 34, I-20156 Milan, Italy
基金
中国国家自然科学基金;
关键词
Low-temperature SCR; Vanadia; Ceria; Redox mechanism; NO oxidative activation; FINDING SADDLE-POINTS; NITRIC-OXIDE; ALKALI RESISTANCE; ACTIVE-SITES; ACID SITES; SCR; AMMONIA; OXIDATION; IDENTIFICATION; ADSORPTION;
D O I
10.1016/j.jcat.2020.08.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Elucidation of redox mechanism is vital to develop highly active catalysts for selective catalytic reduction (SCR) of NOx. Here, we apply an integrated experimental and theoretical approach to investigate low-temperature SCR (LT-SCR) mechanism over VOx/CeO2, a model system containing industrially-relevant vanadia active-species and an eye-catching redox support, i.e. ceria, frequently documented in SCR studies. We show that NO oxidative activation to a gaseous nitrite-precursor intermediate, which was trapped by BaO/Al2O3 and further spectroscopically and computationally validated, serves as a key step in LT-SCR. This scheme involves paired contributions from vanadia and ceria, in which vanadium stabilizes at +5 while Ce3+/Ce4+ varies in the redox cascade, and coupling of V5+-OH and proximal Ce-4(+)-O reduces the NO oxidative activation barrier. These findings progress the understanding of LT-SCR mechanism and deliver a specific perspective on the synergy of surface active-sites and supports, which are essential for the design of further improved SCR catalysts. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 50 条
  • [1] Mechanism and Enhancement of the Low-Temperature Selective Catalytic Reduction of NOx with NH3 by Bifunctional Catalytic Mixtures
    Hu, Wenshuo
    Zou, Renzhi
    Dong, Yi
    Zhang, Yu
    Ran, Mingchu
    Xin, Qi
    Yang, Yang
    Song, Hao
    Wu, Weihong
    Liu, Shaojun
    Zheng, Chenghang
    Gao, Xiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (18) : 6446 - 6454
  • [2] Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of NOx with NH3
    Yang, Rui
    Huang, Haifeng
    Chen, Yijie
    Zhang, Xixiong
    Lu, Hanfeng
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (08) : 1256 - 1262
  • [3] Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3
    Tang, Changjin
    Zhang, Hongliang
    Dong, Lin
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (05) : 1248 - 1264
  • [4] The use of ceria for the selective catalytic reduction of NOx with NH3
    Shan, Wenpo
    Liu, Fudong
    Yu, Yunbo
    He, Hong
    CHINESE JOURNAL OF CATALYSIS, 2014, 35 (08) : 1251 - 1259
  • [5] Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods
    Li, Yi
    Li, Yanping
    Wang, Pengfei
    Hu, Wenping
    Zhang, Suge
    Shi, Qiang
    Zhan, Sihui
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 213 - 222
  • [6] Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods
    Li, Yi
    Li, Yanping
    Wang, Pengfei
    Hu, Wenping
    Zhang, Suge
    Shi, Qiang
    Zhan, Sihui
    Chemical Engineering Journal, 2017, 330 : 213 - 222
  • [7] Novel MnOx catalyst for low-temperature selective catalytic reduction of NOx with NH3
    Tang Xiaolong
    Hao Jiming
    Xu Wenguo
    Li Junhua
    CHINESE JOURNAL OF CATALYSIS, 2006, 27 (10) : 843 - 848
  • [8] Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature
    Shan, Wenpo
    Song, Hua
    CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (09) : 4280 - 4288
  • [9] Recent Advances in Mechanisms and Kinetics of Low-Temperature Selective Catalytic Reduction of NOx with NH3
    Li Yuntao
    Zhong Qin
    PROGRESS IN CHEMISTRY, 2009, 21 (06) : 1094 - 1100
  • [10] Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts:A review
    Yijuan Pu
    Xinyu Xie
    Wenju Jiang
    Lin Yang
    Xia Jiang
    Lu Yao
    Chinese Chemical Letters, 2020, 31 (10) : 2549 - 2555