Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egress

被引:70
|
作者
Hale, Victoria L. [1 ]
Watermeyer, Jean M. [1 ,6 ]
Hackett, Fiona [2 ]
Vizcay-Barrena, Gema [3 ]
van Ooij, Christiaan [2 ]
Thomas, James A. [2 ]
Spink, Matthew C. [4 ]
Harkiolaki, Maria [4 ]
Duke, Elizabeth [4 ]
Fleck, Roland A. [3 ]
Blackman, Michael J. [2 ,5 ]
Saibil, Helen R. [1 ]
机构
[1] Birkbeck Coll, Inst Struct & Mol Biol, Crystallog, London WC1E 7HX, England
[2] Francis Crick Inst, London NW1 1AT, England
[3] Kings Coll London, Ctr Ultrastruct Imaging, London SE1 9RT, England
[4] Diamond Light Source, Didcot OX11 0DE, Oxon, England
[5] Fac Infect & Trop Dis, London Sch Hyg & Trop Med, London WC1E 7HT, England
[6] Pinelands High Sch, ZA-7405 Pinelands, South Africa
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
malaria; egress; electron tomography; soft X-ray microscopy; electron energy loss spectroscopy; PERFORIN-LIKE PROTEIN; RED-BLOOD-CELLS; MALARIA PARASITE RELEASE; CYSTEINE PROTEASE; INFECTED ERYTHROCYTES; MEMBRANE; MEROZOITES; ANTIGEN; INVASION; ANKYRIN;
D O I
10.1073/pnas.1619441114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the asexual blood stages of malarial infection, merozoites invade erythrocytes and replicate within a parasitophorous vacuole to form daughter cells that eventually exit (egress) by sequential rupture of the vacuole and erythrocyte membranes. The current model is that PKG, a malarial cGMP-dependent protein kinase, triggers egress, activating malarial proteases and other effectors. Using selective inhibitors of either PKG or cysteine proteases to separately inhibit the sequential steps in membrane perforation, combined with video microscopy, electron tomography, electron energy loss spectroscopy, and soft X-ray tomography of mature intracellular Plasmodium falciparum parasites, we resolve intermediate steps in egress. We show that the parasitophorous vacuole membrane (PVM) is permeabilized 10-30 min before its PKG-triggered breakdown into multilayered vesicles. Just before PVM breakdown, the host red cell undergoes an abrupt, dramatic shape change due to the sudden breakdown of the erythrocyte cytoskeleton, before permeabilization and eventual rupture of the erythrocyte membrane to release the parasites. In contrast to the previous view of PKG-triggered initiation of egress and a gradual dismantling of the host erythrocyte cytoskeleton over the course of schizont development, our findings identify an initial step in egress and show that host cell cytoskeleton breakdown is restricted to a narrow time window within the final stages of egress.
引用
收藏
页码:3439 / 3444
页数:6
相关论文
共 12 条
  • [1] Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte
    Ruecker, Andrea
    Shea, Michael
    Hackett, Fiona
    Suarez, Catherine
    Hirst, Elizabeth M. A.
    Milutinovic, Katarina
    Withers-Martinez, Chrislaine
    Blackman, Michael J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (45) : 37949 - 37963
  • [2] Digestive vacuole of Plasmodium falciparum released during erythrocyte rupture dually activates complement and coagulation
    Dasari, Prasad
    Heber, Sophia D.
    Beisele, Maike
    Torzewski, Michael
    Reifenberg, Kurt
    Orning, Carolin
    Fries, Anja
    Zapf, Anna-Lena
    Baumeister, Stefan
    Lingelbach, Klaus
    Udomsangpetch, Rachanee
    Bhakdi, Sebastian Chakrit
    Reiss, Karina
    Bhakdi, Sucharit
    BLOOD, 2012, 119 (18) : 4301 - 4310
  • [3] Global Profiling of Proteolysis during Rupture of Plasmodium falciparum from the Host Erythrocyte
    Bowyer, Paul W.
    Simon, Gabriel M.
    Cravatt, Benjamin F.
    Bogyo, Matthew
    MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (05)
  • [4] Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface
    Maier, Alexander G.
    Rug, Melanie
    O'Neill, Matthew T.
    Beeson, James G.
    Marti, Matthias
    Reeder, John
    Cowman, Alan F.
    BLOOD, 2007, 109 (03) : 1289 - 1297
  • [5] A role for erythrocyte band 3 degradation by the parasite gp76 serine protease in the formation of the parasitophorous vacuole during invasion of erythrocytes by Plasmodium falciparum
    Roggwiller, E
    Betoulle, MEM
    Blisnick, T
    Breton, CB
    MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1996, 82 (01) : 13 - 24
  • [6] Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P-falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton
    Oberli, Alexander
    Zurbrugg, Laura
    Rusch, Sebastian
    Brand, Francoise
    Butler, Madeleine E.
    Day, Jemma L.
    Cutts, Erin E.
    Lavstsen, Thomas
    Vakonakis, Ioannis
    Beck, Hans-Peter
    CELLULAR MICROBIOLOGY, 2016, 18 (10) : 1415 - 1428
  • [7] Parasite-Mediated Remodeling of the Host Microfilament Cytoskeleton Enables Rapid Egress of Trypanosoma cruzi following Membrane Rupture
    Ferreira, Eden R.
    Bonfim-Melo, Alexis
    Burleigh, Barbara A.
    Costales, Jaime A.
    Tyler, Kevin M.
    Mortara, Renato A.
    MBIO, 2021, 12 (03):
  • [8] Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton
    Le Bonniec, S
    Deregnaucourt, C
    Redeker, V
    Banerjee, R
    Grellier, P
    Goldberg, DE
    Schrével, J
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (20) : 14218 - 14223
  • [9] How many functional transport pathways does Plasmodium falciparum induce in the membrane of its host erythrocyte?
    Ginsburg, H
    Stein, WD
    TRENDS IN PARASITOLOGY, 2005, 21 (03) : 118 - 121
  • [10] trans expression of a Plasmodium falciparum histidine-rich protein II (HRPII) reveals sorting of soluble proteins in the periphery of the host erythrocyte malarial food vacuole
    Akompong, T
    Kadekoppala, M
    Harrison, T
    Oksman, A
    Goldberg, DE
    Fujioka, H
    Samuel, BU
    Sullivan, D
    Haldar, K
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (32) : 28923 - 28933