The Polstar high resolution spectropolarimetry MIDEX mission

被引:7
|
作者
Scowen, Paul A. [1 ]
Gayley, Ken [2 ]
Ignace, Richard [3 ]
Neiner, Coralie [4 ]
Vasudevan, Gopal [5 ]
Woodruff, Robert [6 ]
Casini, Roberto [7 ]
Shultz, Matt [8 ]
Andersson, B. -G [9 ]
Wisniewski, John [10 ]
机构
[1] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] East Tennessee State Univ, Dept Phys & Astron, Johnson City, TN 37614 USA
[4] Univ Paris Cite, LESIA, Paris Observ, PSL Univ,Sorbonne Univ,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
[5] Lockheed Martin ATC, Palo Alto, CA 94034 USA
[6] Woodruff Consulting, 2081 Evergreen Ave, Boulder, CO 80304 USA
[7] NCAR, High Altitude Observ, Boulder, CO 80301 USA
[8] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[9] NASA Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA
[10] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Polstar - NASA MIDEX; Far ultraviolet; Near ultraviolet astronomical observations; Extreme ultraviolet astronomy; Spectropolarimetry; Explorer; Massive stars; Interstellar medium; Exoplanet formation; DRIVEN STELLAR WINDS; 2-DIMENSIONAL RADIATIVE-TRANSFER; COROTATING INTERACTION REGIONS; INTERSTELLAR LINEAR-POLARIZATION; DISCRETE ABSORPTION COMPONENTS; ROTATING MAGNETOSPHERE MODEL; HERBIG AE/BE STARS; PRE-MAIN-SEQUENCE; H-ALPHA-EMISSION; WOLF-RAYET WINDS;
D O I
10.1007/s10509-022-04107-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Polstar mission will provide a space-borne 60 cm spectropolarimeter operating at ultraviolet (UV) wavelengths, capturing all four Stokes parameters (intensity, two linear polarization components, and circular polarization). Polstar's capabilities are designed to meet its goal of determining how circumstellar gas flows alter and inform massive star evolution, affect the stellar remnant population, and stir and enrich the interstellar medium (ISM). These will be achieved by investigating the dynamical geometries in the winds and disks of hot stars, the composition and magnetic alignment of interstellar dust, and the star-forming accretion disks of UV-bright stars at an important transition boundary. Together these areas map out a kind of two-way interface between massive stars and their effect on our galaxy, wherein the stellar winds enrich the ISM with metals and kinetic energy, preconditioning their environment and the stellar endpoints prior to undergoing supernova. The ISM dust in turn reveals the composition and magnetic environment leading to new star formation, and the accretion disks of Herbig Ae/Be stars reveal how the ISM gas returns to make new massive stars. Polstar will combine high-resolution spectroscopy in the time domain with high-precision UV polarimetry. Doppler-shifted UV resonance line opacity will provide information about circumstellar kinematics, while polarization gives complementary geometric information about unseen structures. The composition and magnetic alignment of the smallest interstellar dust grains provides a probe of the ISM utilizing radiative alignment theory (RAT). Polstar will operate in the far-UV (FUV) at 122-200 nm at high spectral resolution of around R similar to 30k, and at FUV and near-UV (NUV) wavelengths of 122-320 nm at lower spectral resolutions of 0.1 - 1k. Detection of polarization levels as weak as 0.1% are expected, with a temporal cadence ranging from 5-10 minutes for most wind variability studies, to hours or days for sampling rotation, to days or weeks for sampling binary orbits, to months to a year for sampling substructure in the inner regions of protoplanetary disks. Sub-meter-class aperture is well suited to access this wide array of time domain science, made possible by restricting to a few hundred bright, massive stars, necessarily extincted by a small to moderate column of interstellar dust, informing both the attributes of the stars and the ISM through which they are seen. As such, the focus is on our own galaxy and its evolutionary drivers, but a few targets in the Magellanic clouds offer the potential to extend this understanding to low-metallicity environments.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The Polstar High Resolution Spectropolarimetry MIDEX Mission
    Scowen, Paul A.
    Gayley, Ken
    Neiner, Coralie
    Vasudevan, Gopal
    Woodruff, Robert
    Ignace, Richard
    Casini, Roberto
    Hull, Tony
    Nordt, Alison
    Stahl, H. Philip
    [J]. UV/OPTICAL/IR SPACE TELESCOPES AND INSTRUMENTS: INNOVATIVE TECHNOLOGIES AND CONCEPTS X, 2021, 11819
  • [2] The Polstar High Resolution Spectropolarimetry MIDEX Mission
    Scowen, Paul A.
    Ignace, Richard
    Gayley, Ken
    Vasudevan, Gopal
    Woodruff, Robert
    Neiner, Coralie
    Richardson, Scott
    Nordt, Alison
    Hull, Tony
    Nikzad, Shouleh
    Shapiro, Charles
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY, 2022, 12181
  • [3] The Polstar high resolution spectropolarimetry MIDEX mission
    Paul A. Scowen
    Ken Gayley
    Richard Ignace
    Coralie Neiner
    Gopal Vasudevan
    Robert Woodruff
    Roberto Casini
    Matt Shultz
    B.-G. Andersson
    John Wisniewski
    [J]. Astrophysics and Space Science, 2022, 367
  • [4] UV spectropolarimetry with Polstar: protoplanetary disks
    Wisniewski, John P. P.
    Berdyugin, Andrei V. V.
    Berdyugina, Svetlana V. V.
    Danchi, William C. C.
    Dong, Ruobing
    Oudmaijer, Rene D.
    Airapetian, Vladimir S. S.
    Brittain, Sean D. D.
    Gayley, Ken
    Ignace, Richard
    Langlois, Maud
    Lawson, Kellen D. D.
    Lomax, Jamie R. R.
    Rich, Evan A. A.
    Tamura, Motohide
    Vink, Jorick S. S.
    Scowen, Paul A. A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (12)
  • [5] UV spectropolarimetry with Polstar: protoplanetary disks
    John P. Wisniewski
    Andrei V. Berdyugin
    Svetlana V. Berdyugina
    William C. Danchi
    Ruobing Dong
    René D. Oudmaijer
    Vladimir S. Airapetian
    Sean D. Brittain
    Ken Gayley
    Richard Ignace
    Maud Langlois
    Kellen D. Lawson
    Jamie R. Lomax
    Evan A. Rich
    Motohide Tamura
    Jorick S. Vink
    Paul A. Scowen
    [J]. Astrophysics and Space Science, 2022, 367
  • [6] Ultraviolet spectropolarimetry with polstar: interstellar medium science
    Andersson, B-g
    Clayton, G. C.
    Doney, K. D.
    Panopoulou, G. V.
    Hoang, T.
    Magalhaes, A. M.
    Yan, H.
    Ignace, R.
    Scowen, P. A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (12)
  • [7] Ultraviolet spectropolarimetry with Polstar: using Polstar to test magnetospheric mass-loss quenching
    M. E. Shultz
    R. Casini
    M. C. M. Cheung
    A. David-Uraz
    T. del Pino Alemán
    C. Erba
    C. P. Folsom
    K. Gayley
    R. Ignace
    Z. Keszthelyi
    O. Kochukhov
    Y. Nazé
    C. Neiner
    M. Oksala
    V. Petit
    P. A. Scowen
    N. Sudnik
    A. ud-Doula
    J. S. Vink
    G. A. Wade
    [J]. Astrophysics and Space Science, 2022, 367
  • [8] Ultraviolet spectropolarimetry with Polstar: using Polstar to test magnetospheric mass-loss quenching
    Shultz, M. E.
    Casini, R.
    Cheung, M. C. M.
    David-Uraz, A.
    Aleman, T. del Pino
    Erba, C.
    Folsom, C. P.
    Gayley, K.
    Ignace, R.
    Keszthelyi, Z.
    Kochukhov, O.
    Naze, Y.
    Neiner, C.
    Oksala, M.
    Petit, V
    Scowen, P. A.
    Sudnik, N.
    Ud-Doula, A.
    Vink, J. S.
    Wade, G. A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (12)
  • [9] Ultraviolet spectropolarimetry with polstar: interstellar medium science
    B-G Andersson
    G. C. Clayton
    K. D. Doney
    G. V. Panopoulou
    T. Hoang
    A. M. Magalhaes
    H. Yan
    R. Ignace
    P. A. Scowen
    [J]. Astrophysics and Space Science, 2022, 367
  • [10] UV spectropolarimetry for stellar, interstellar, and exoplanetary astrophysics with Polstar
    Paul A. Scowen
    Carol E. Jones
    René D. Oudmaijer
    [J]. Astrophysics and Space Science, 2022, 367