Minimax Lower Bounds for Ridge Combinations Including Neural Nets

被引:0
|
作者
Klusowski, Jason M. [1 ]
Barron, Andrew R. [1 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
关键词
Nonparametric regression; nonlinear regression; neural nets; penalization; machine learning; high-dimensional data analysis; learning theory; generalization error; greedy algorithms; metric entropy; packing sets; polynomial nets; sinusoidal nets; constant weight codes; APPROXIMATION; RATES; REGRESSION; CLASSIFICATION; COMPLEXITY; SIZE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Estimation of functions of d variables is considered using ridge combinations of the form Sigma(m)(k=1) c(1,k)phi(Sigma(d)(j=1) c(0,j,k)x(j)-b(k)) where the activation function phi is a function with bounded value and derivative. These include single-hidden layer neural networks, polynomials, and sinusoidal models. From a sample of size n of possibly noisy values at random sites X is an element of B = [-1, 1](d) the minimax mean square error is examined for functions in the closure of the l(1) hull of ridge functions with activation phi. It is shown to be of order d/n to a fractional power (when is of smaller order than n), and to be of order (log d)/n to a fractional power (when d is of larger order than Dependence on constraints v(0) and v(1) on the l(1) norms of inner parameter c(0) and outer parameter c(1), respectively, is also examined. Also, lower and upper bounds on the fractional power are given. The heart of the analysis is development of information-theoretic packing numbers for these classes of functions.
引用
收藏
页码:1376 / 1380
页数:5
相关论文
共 50 条
  • [1] Obtaining minimax lower bounds: a review
    Arlene K. H. Kim
    Journal of the Korean Statistical Society, 2020, 49 : 673 - 701
  • [2] Strong Minimax Lower Bounds for Learning
    András Antos
    Gábor Lugosi
    Machine Learning, 1998, 30 : 31 - 56
  • [3] Minimax lower bounds and moduli of continuity
    Jongbloed, G
    STATISTICS & PROBABILITY LETTERS, 2000, 50 (03) : 279 - 284
  • [4] Strong minimax lower bounds for learning
    Antos, A
    Lugosi, G
    MACHINE LEARNING, 1998, 30 (01) : 31 - 56
  • [5] Obtaining minimax lower bounds: a review
    Kim, Arlene K. H.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 673 - 701
  • [6] Minimax Lower Bounds for Linear Independence Testing
    Ramdas, Aaditya
    Isenberg, David
    Singh, Aarti
    Wasserman, Larry
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 965 - 969
  • [7] Lower bounds on the minimax risk of sequential estimators
    Mizera, B
    STATISTICS, 1996, 28 (02) : 123 - 129
  • [8] Minimax Lower Bounds for H∞-Norm Estimation
    Tu, Stephen
    Boczar, Ross
    Recht, Benjamin
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 3538 - 3543
  • [9] Minimax Lower Bounds for Circular Source Localization
    Xu, Aolin
    Coleman, Todd
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1242 - 1247
  • [10] Minimax lower bounds for function estimation on graphs
    Kirichenko, Alisa
    van Zanten, Harry
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 651 - 666