The gastrointestinal effects of intraluminal fats may be critically dependent on the chain length of fatty acids released during lipolysis. We postulated that intraduodenal administration of lauric acid ( 12 carbon atoms; C12) would suppress appetite, modulate antropyloroduodenal pressure waves (PWs), and stimulate the release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) more than an identical dose of decanoic acid ( 10 carbon atoms; C10). Eight healthy males ( 19 - 47 yr old) were studied on three occasions in a double-blind, randomized fashion. Appetite perceptions, antropyloroduodenal PWs, and plasma CCK and GLP-1 concentrations were measured during a 90-min intraduodenal infusion of 1) C12, 2) C10, or 3) control ( rate: 2 ml/min, 0.375 kcal/min for C12/C10). Energy intake at a buffet meal, immediately after completion of the infusion, was also quantified. C12, but not C10, suppressed appetite perceptions ( P < 0.001) and energy intake ( control: 4,604 +/- 464 kJ, C10: 4,109 +/- 588 kJ, and C12: 1,747 +/- 632 kJ; P < 0.001, C12 vs. control/C10). C12, but not C10, also induced nausea ( P < 0.001). C12 stimulated basal pyloric pressures and isolated pyloric PWs and suppressed antral and duodenal PWs compared with control ( P < 0.05 for all). C10 transiently stimulated isolated pyloric PWs ( P = 0.001) and had no effect on antral PWs but markedly stimulated duodenal PWs ( P = 0.004). C12 and C10 increased plasma CCK ( P < 0.001), but the effect of C12 was substantially greater ( P = 0.001); C12 stimulated GLP-1 ( P < 0.05), whereas C10 did not. In conclusion, there are major differences in the effects of intraduodenal C12 and C10, administered at 0.375 kcal/min, on appetite, energy intake, antropyloroduodenal PWs, and gut hormone release in humans.