Towards physics-based segmentation of photographic color images

被引:0
|
作者
Luo, J
Gray, RT
Lee, HC
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many digital image processing applications, image segmentation is required to provide initial partitioning of local image regions based on certain statistical or contextual homogeneity measures. One goal of image segmentation would be to segment the image into regions that correspond to physically and semantically coherent objects in the scene. We propose can improved color segmentation algorithm by taking advantage of a simple ''k-mode'' algorithm and an adaptive Bayesian k-means algorithm. The ''k-mode'' algorithm uses a physics-based distance metric to generate regular par partitioning of the color space. The adaptive L-means algorithm utilizes two additional mechanisms, i.e., spatial homogeneity constraints and spatial adaptivity, to achieve more robust and coherent segmentation. The proposed algorithm integrates a physically more meaningful color space and the corresponding color difference metric into the the adaptive Bayesian k-means framework in an effort towards physics-based segmentation of photographic color images.
引用
收藏
页码:58 / 61
页数:4
相关论文
共 50 条
  • [1] Physics-based segmentation: looking beyond color
    Maxwell, BA
    Shafer, SA
    IMAGE UNDERSTANDING WORKSHOP, 1996 PROCEEDINGS, VOLS I AND II, 1996, : 867 - 878
  • [2] Physics-based segmentation: Moving beyond color
    Maxwell, BA
    Shafer, SA
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 742 - 749
  • [3] Physics-based face database for color research
    Marszalec, E
    Martinkauppi, B
    Soriano, M
    Pietikäinen, M
    JOURNAL OF ELECTRONIC IMAGING, 2000, 9 (01) : 32 - 38
  • [4] Physics-Based Regularizer for Joint Soft Segmentation and Reconstruction of Electron Microscopy Images of Polycrystalline Microstructures
    Ziabari, Amir Koushyar
    Rickman, Jeffrey M.
    Drummy, Lawrence F.
    Simmons, Jeffrey P.
    Bouman, Charles A.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (04) : 660 - 674
  • [5] Autonomous physics-based color learning under daylight
    Lauzière, YB
    Gingras, D
    Ferrie, FP
    POLARIZATION AND COLOR TECHNIQUES IN INDUSTRIAL INSPECTION, 1999, 3826 : 86 - 100
  • [6] Physics-based Edge Evaluation for Improved Color Constancy
    Gijsenij, Arjan
    Gevers, Theo
    van de Weijer, Joost
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 581 - +
  • [7] A PHYSICS-BASED UNMIXING METHOD FOR THERMAL HYPERSPECTRAL IMAGES
    Cubero-Castan, Manuel
    Chanussot, Jocelyn
    Achard, Veronique
    Briottet, Xavier
    Shimoni, Michal
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5082 - 5086
  • [8] Interactive Segmentation of Color Images Based on Color Saliency
    Gion, Daiki
    Takimoto, Hironori
    Kishihara, Mitsuyoshi
    Okubo, Kensuke
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2015, 98 (03) : 24 - 32
  • [9] Physics-based machine learning for subcellular segmentation in living cells
    Sekh, Arif Ahmed
    Opstad, Ida S.
    Godtliebsen, Gustav
    Birgisdottir, Asa Birna
    Ahluwalia, Balpreet Singh
    Agarwal, Krishna
    Prasad, Dilip K.
    NATURE MACHINE INTELLIGENCE, 2021, 3 (12) : 1071 - 1080
  • [10] Physics-based machine learning for subcellular segmentation in living cells
    Arif Ahmed Sekh
    Ida S. Opstad
    Gustav Godtliebsen
    Åsa Birna Birgisdottir
    Balpreet Singh Ahluwalia
    Krishna Agarwal
    Dilip K. Prasad
    Nature Machine Intelligence, 2021, 3 : 1071 - 1080