COMPRESSIVE IMAGING USING APPROXIMATE MESSAGE PASSING AND A CAUCHY PRIOR IN THE WAVELET DOMAIN

被引:0
|
作者
Hill, P. R. [1 ]
Kim, J-H. [1 ]
Basarab, A. [2 ]
Kouame, D. [2 ]
Bull, D. R. [1 ]
Achim, A. [1 ]
机构
[1] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
[2] Univ Toulouse, CNRS, IRIT, INPT,UPS,UT1C,UT2J, Toulouse, France
基金
英国工程与自然科学研究理事会;
关键词
SHRINKAGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Approximate Message Passing (AMP) is an iterative reconstruction algorithm that performs signal denoising within a compressive sensing framework. We propose the use of heavy tailed distribution based image denoising, specifically using a Cauchy prior based Maximum A-Posteriori (MAP) estimate within a wavelet based AMP compressive sensing structure. The use of this MAP denoising algorithm provides extremely fast convergence for image based compressive sensing. The proposed method converges approximately twice as fast as the compared AMP methods whilst providing superior final MSE results over a range of measurement rates.
引用
收藏
页码:2514 / 2518
页数:5
相关论文
共 50 条
  • [1] Compressive Imaging using Approximate Message Passing and a Markov-Tree Prior
    Som, Subhojit
    Potter, Lee C.
    Schniter, Philip
    [J]. 2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 243 - 247
  • [2] Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior
    Som, Subhojit
    Schniter, Philip
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3439 - 3448
  • [3] Compressive Imaging via Approximate Message Passing with Wavelet-Based Image Denoising
    Tan, Jin
    Ma, Yanting
    Baron, Dror
    [J]. 2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 424 - 428
  • [4] Speech Compressive Sampling Using Approximate Message Passing and a Markov Chain Prior
    Jia, Xiaoli
    Liu, Peilin
    Jiang, Sumxin
    [J]. SENSORS, 2020, 20 (16) : 1 - 13
  • [5] Compressive Hyperspectral Imaging via Approximate Message Passing
    Tan, Jin
    Ma, Yanting
    Rueda, Hoover
    Baron, Dror
    Arce, Gonzalo R.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 389 - 401
  • [6] Compressive Imaging via Approximate Message Passing With Image Denoising
    Tan, Jin
    Ma, Yanting
    Baron, Dror
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (08) : 2085 - 2092
  • [7] AN APPROXIMATE MESSAGE PASSING APPROACH FOR COMPRESSIVE HYPERSPECTRAL IMAGING USING A SIMULTANEOUS LOW-RANK AND JOINT-SPARSITY PRIOR
    Li, Yangqing
    Prasad, Saurabh
    Chen, Wei
    Yin, Changchuan
    Han, Zhu
    [J]. 2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [8] Scampi: a robust approximate message-passing framework for compressive imaging
    Barbier, Jean
    Tramel, Eric W.
    Krzakala, Florent
    [J]. INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [9] COMPRESSIVE PARAMETER ESTIMATION VIA APPROXIMATE MESSAGE PASSING
    Hamzehei, Shermin
    Duarte, Marco F.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3327 - 3331
  • [10] Compressive Video Sampling With Approximate Message Passing Decoding
    Ma, Jianwei
    Plonka, Gerlind
    Hussaini, M. Yousuff
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2012, 22 (09) : 1354 - 1364