Training ANFIS Using Artificial Bee Colony Algorithm

被引:15
|
作者
Karaboga, Dervis [1 ]
Kaya, Ebubekir [2 ]
机构
[1] Erciyes Univ, Dept Comp Engn, Kayseri, Turkey
[2] Nevsehir Univ, Dept Comp Sci, Nevsehir, Turkey
关键词
component; ANFIS; artificial bee colony; identification; neuro-fuzzy; swarm intelligent; PARTICLE SWARM OPTIMIZATION; SYSTEM;
D O I
10.1109/INISTA.2013.6577625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new approach for training the adaptive network based fuzzy inference system (ANFIS). In this study, we apply one of the swarm intelligent branches, named artificial bee colony algorithm (ABC) for training. We use ABC for training the antecedent parameters and the conclusion parameters. The proposed method is applied to identification of the nonlinear system. The simulation results show that in comparison with genetic algorithm (GA), backpropagation (BP) and hybrid learning (HL) that is a combination of least-squares and backpropagation. The results show ABC optimizes ANFIS parameters are better than GA, BL and HL.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Training ANFIS by using the artificial bee colony algorithm
    Karaboga, Dervis
    Kaya, Ebubekir
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (03) : 1669 - 1679
  • [2] TRAINING ANFIS USING ARTIFICIAL BEE COLONY ALGORITHM FOR NONLINEAR DYNAMIC SYSTEMS IDENTIFICATION
    Karaboga, Dervis
    Kaya, Ebubekir
    [J]. 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 493 - 496
  • [3] An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training
    Karaboga, Dervis
    Kaya, Ebubekir
    [J]. APPLIED SOFT COMPUTING, 2016, 49 : 423 - 436
  • [4] Optimization of ANFIS Using Artificial Bee Colony Algorithm for Classification of Malaysian SMEs
    Salleh, Mohd. Najib Mohd.
    Hussain, Kashif
    Naseem, Rashid
    Uddin, Jamal
    [J]. RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 21 - 30
  • [5] Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems
    Dervis Karaboga
    Ebubekir Kaya
    [J]. Arabian Journal for Science and Engineering, 2019, 44 : 3531 - 3547
  • [6] Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems
    Karaboga, Dervis
    Kaya, Ebubekir
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (04) : 3531 - 3547
  • [7] Artificial bee colony (ABC) algorithm on training artificial neural networks
    Karaboga, Dervis
    Akay, Bahriye
    [J]. 2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 818 - 821
  • [8] Hybrid Artificial Bee Colony Algorithm for Neural Network Training
    Ozturk, Celal
    Karaboga, Dervis
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 84 - 88
  • [9] An improved artificial bee colony algorithm: particle bee colony
    Wang J.-C.
    Li Q.
    Cui J.-R.
    Zuo W.-X.
    Zhao Y.-F.
    [J]. Li, Qing (liqing@ies.ustb.edu.cn), 2018, Science Press (40): : 871 - 881