Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer

被引:44
|
作者
Yu, Yu [1 ,2 ]
Sun, Yongbin [3 ]
Cao, Changyan [1 ,2 ]
Yang, Shuliang [1 ,2 ]
Liu, Hua [1 ,2 ]
Li, Ping [1 ,2 ]
Huang, Peipei [3 ]
Song, Weiguo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
SELF-ASSEMBLED MONOLAYERS; ACTIVATED CARBONS; GRAPHITE OXIDE; PERFORMANCE; SHEETS;
D O I
10.1039/c4ta00905c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diethylene-glycol/graphene nano-composites were produced by a simple mild solvothermal method, in which diethylene glycol was grafted onto the surfaces of reduced graphene oxides (RGO) as an inter-layer spacer to spatially separate graphene sheets, i.e. to prevent the aggregation of graphene single sheets. The presence of diethylene glycol was confirmed by several characterizations, including IR, XPS, and AFM. Because of the chain length and electrolyte affinity of the diethylene glycol spacer, most of the surface area of graphene single layer sheets could be accessed by electrolyte, leading to high capacity as supercapacitor electrodes with an impressive electrochemical capacitance (237.8 F g(-1) at a charging current of 0.1 A g(-1)), outstanding rate performances (182.9 F g(-1) at 20 A g(-1)), and excellent cycling stabilities (less than 5 and 10% decline after 2000 and 10 000 cycles). The diethylene-glycol/graphene nano-composites are thus particularly promising for "high-power densities" and "long cycle life" supercapacitor electrodes.
引用
收藏
页码:7706 / 7710
页数:5
相关论文
共 50 条
  • [1] Graphene-Based Composites for Supercapacitor Electrodes
    Fan, Xiaohua
    Phebus, Bruce D.
    Li, Lingjie
    Chen, Shaowei
    SCIENCE OF ADVANCED MATERIALS, 2015, 7 (10) : 1916 - 1944
  • [2] Supercapacitor Nanofiber Electrodes Graphene-Based
    Mustafa, Mustafa H.
    Zdunek, Alan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (04): : 2917 - 2932
  • [3] Advances in graphene-based supercapacitor electrodes
    Bokhari, Syeda Wishal
    Siddique, Ahmad Hassan
    Sherrell, Peter C.
    Yue, Xiaoyu
    Karumbaiah, Kariappa Maletira
    Wei, Shanghai
    Ellis, Amanda V.
    Gao, Wei
    ENERGY REPORTS, 2020, 6 : 2768 - 2784
  • [4] Graphene-based materials as supercapacitor electrodes
    Zhang, Li Li
    Zhou, Rui
    Zhao, X. S.
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (29) : 5983 - 5992
  • [5] Graphene-based materials for supercapacitor electrodes - A review
    Ke, Qingqing
    Wang, John
    JOURNAL OF MATERIOMICS, 2016, 2 (01) : 37 - 54
  • [6] Hierarchically structured graphene-based supercapacitor electrodes
    Dong, Lei
    Chen, Zhongxin
    Yang, Dong
    Lu, Hongbin
    RSC ADVANCES, 2013, 3 (44): : 21183 - 21191
  • [7] Graphene-based thin film supercapacitor with graphene oxide as dielectric spacer
    Liu, Jinzhang
    Galpaya, Dilini
    Notarianni, Marco
    Yan, Cheng
    Motta, Nunzio
    APPLIED PHYSICS LETTERS, 2013, 103 (06)
  • [8] Graphene-Based Inks for Flexible Supercapacitor Electrodes: A Review
    Nargatti, Kiran I.
    Pathak, Tanaya S.
    Ahankari, Sandeep S.
    Dizon, John Ryan C.
    Subramaniam, Ramesh T.
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 6 (01) : 24 - 46
  • [9] Three-Dimensional Graphene-Based Composite Hydrogel Materials for Flexible Supercapacitor Electrodes
    Lai, Enping
    Yue, Xinxia
    Ning, Wan'e
    Huang, Jiwei
    Ling, Xinlong
    Lin, Haitao
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [10] Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems
    Zhu, Lijun
    Liu, Xiaoqiang
    Li, Lin
    Wan, Xinyi
    Tao, Ran
    Xie, Zhongniu
    Feng, Ji
    Zeng, Changgan
    NATURE COMMUNICATIONS, 2023, 14 (01)