3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks

被引:57
|
作者
Hull, Sarah M. [1 ]
Lindsay, Christopher D. [2 ]
Brunel, Lucia G. [1 ]
Shiwarski, Daniel J. [3 ]
Tashman, Joshua W. [3 ]
Roth, Julien G. [4 ]
Myung, David [1 ,5 ,6 ]
Feinberg, Adam W. [3 ,7 ]
Heilshorn, Sarah C. [2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[4] Stanford Univ, Inst Stem Cell Biol & Regenerat Med, Stanford, CA 94305 USA
[5] Stanford Univ, Byers Eye Inst, Dept Ophthalmol, Sch Med, Stanford, CA 94305 USA
[6] VA Palo Alto Hlth Care Syst, Div Ophthalmol, Palo Alto, CA 94304 USA
[7] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D bioprinting; bioink; biomaterials; bioorthogonal chemistry; BIOORTHOGONAL CLICK CHEMISTRY; SOLUTE DIFFUSION; STEM-CELLS; HYDROGELS; CULTURE; GELATIN; MAINTENANCE; NANOFIBERS; STIFFNESS; THERAPY;
D O I
10.1002/adfm.202007983
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, a versatile bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers is developed. This family of materials is termed UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) are each used as backbone polymers to create inks with storage moduli spanning from 200 to 10 000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids are printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 3D Bioprinting Using Universal Fugitive Network Bioinks
    Arslan, Hakan
    Davuluri, Aneela
    Nguyen, Hiep H.
    So, Byung Ran
    Lee, Juhyun
    Jeon, Junha
    Yum, Kyungsuk
    [J]. ACS APPLIED BIO MATERIALS, 2024,
  • [2] Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks
    Ouyang, Liliang
    Armstrong, James P. K.
    Lin, Yiyang
    Wojciechowski, Jonathan P.
    Lee-Reeves, Charlotte
    Hachim, Daniel
    Zhou, Kun
    Burdick, Jason A.
    Stevens, Molly M.
    [J]. SCIENCE ADVANCES, 2020, 6 (38):
  • [3] Engineering bioinks for 3D bioprinting
    Decante, Guy
    Costa, Joao B.
    Silva-Correia, Joana
    Collins, Maurice N.
    Reis, Rui L.
    Oliveira, J. Miguel
    [J]. BIOFABRICATION, 2021, 13 (03)
  • [4] Collagen Bioinks for 3D Bioprinting
    Bagley, B.
    [J]. TISSUE ENGINEERING PART A, 2017, 23 : S57 - S57
  • [5] Bioinks for 3D bioprinting: an overview
    Gungor-Ozkerim, P. Selcan
    Inci, Ilyas
    Zhang, Yu Shrike
    Khademhosseini, Ali
    Dokmeci, Mehmet Remzi
    [J]. BIOMATERIALS SCIENCE, 2018, 6 (05) : 915 - 946
  • [6] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    [J]. ACTA BIOMATERIALIA, 2022, 151 : 45 - 69
  • [7] Functionalizing bioinks for 3D bioprinting applications
    Parak, Azraa
    Pradeep, Priyamvada
    du Toit, Lisa C.
    Kumar, Pradeep
    Choonara, Yahya E.
    Pillay, Viness
    [J]. DRUG DISCOVERY TODAY, 2019, 24 (01) : 198 - 205
  • [8] Natural and Synthetic Bioinks for 3D Bioprinting
    Khoeini, Roghayeh
    Nosrati, Hamed
    Akbarzadeh, Abolfazl
    Eftekhari, Aziz
    Kavetskyy, Taras
    Khalilov, Rovshan
    Ahmadian, Elham
    Nasibova, Aygun
    Datta, Pallab
    Roshangar, Leila
    Deluca, Dante C.
    Davaran, Soodabeh
    Cucchiarini, Magali
    Ozbolat, Ibrahim T.
    [J]. ADVANCED NANOBIOMED RESEARCH, 2021, 1 (08):
  • [9] Nanocellulosic materials as bioinks for 3D bioprinting
    Piras, Carmen C.
    Fernandez-Prieto, Susana
    De Borggraeve, Wim M.
    [J]. BIOMATERIALS SCIENCE, 2017, 5 (10) : 1988 - 1992
  • [10] Advancing bioinks for 3D bioprinting using reactive fillers: A review
    Heid, Susanne
    Boccaccini, Aldo R.
    [J]. ACTA BIOMATERIALIA, 2020, 113 : 1 - 22