L(j, k)-labeling number of Cartesian product of path and cycle

被引:0
|
作者
Wu, Qiong [1 ,2 ]
Shiu, Wai Chee [1 ]
Sun, Pak Kiu [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, 224 Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China
[2] Tianjin Univ Technol & Educ, Dept Computat Sci, Tianjin 300222, Peoples R China
关键词
L(j; k)-labeling; Cartesian product; Path; Cycle;
D O I
10.1007/s10878-014-9775-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For positive numbers and , an -labeling of is an assignment of numbers to vertices of such that if , and if . The span of is the difference between the maximum and the minimum numbers assigned by . The -labeling number of , denoted by , is the minimum span over all -labelings of . In this article, we completely determine the -labeling number () of the Cartesian product of path and cycle.
引用
收藏
页码:604 / 634
页数:31
相关论文
共 50 条
  • [1] Circular L(j,k)-labeling number of direct product of path and cycle
    Wu, Qiong
    Shiu, Wai Chee
    Sun, Pak Kiu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 355 - 368
  • [2] Circular L(j,k)-labeling number of direct product of path and cycle
    Qiong Wu
    Wai Chee Shiu
    Pak Kiu Sun
    Journal of Combinatorial Optimization, 2014, 27 : 355 - 368
  • [3] L(j, k)-number of direct product of path and cycle
    Wai Chee Shiu
    Qiong Wu
    Acta Mathematica Sinica, English Series, 2013, 29 : 1437 - 1448
  • [4] L(j,k)-number of Direct Product of Path and Cycle
    Wai Chee SHIU
    Qiong WU
    Acta Mathematica Sinica,English Series, 2013, (08) : 1437 - 1448
  • [5] L(j,k)-number of Direct Product of Path and Cycle
    Wai Chee SHIU
    Qiong WU
    Acta Mathematica Sinica, 2013, 29 (08) : 1437 - 1448
  • [6] L(j, k)-number of direct product of path and cycle
    Shiu, Wai Chee
    Wu, Qiong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (08) : 1437 - 1448
  • [7] On L(d, 1)-labeling of Cartesian product of a cycle and a path
    Chiang, Shih-Hu
    Yan, Jing-Ho
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 2867 - 2881
  • [8] On L(2,1)-labeling of the Cartesian product of a cycle and a path
    Jha, PK
    Narayanan, A
    Sood, P
    Sundaram, K
    Sunder, V
    ARS COMBINATORIA, 2000, 55 : 81 - 89
  • [9] On the Brush Number of the Cartesian Product of Tree with Path or Cycle
    Chia, Gek Ling
    Tan, Ta Sheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1265 - 1275
  • [10] On the Brush Number of the Cartesian Product of Tree with Path or Cycle
    Gek Ling Chia
    Ta Sheng Tan
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1265 - 1275