On the area formulas of inscribed polygons in classical geometry

被引:0
|
作者
Komori, Yohei [1 ]
Umezawa, Runa [2 ]
Yasui, Takuro [1 ]
机构
[1] Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Nishi Waseda 1-6-1, Tokyo 1698050, Japan
[2] Waseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, Ohkubo 3-4-1, Tokyo 1698555, Japan
关键词
Euclidean geometry; hyperbolic geometry; spherical geometry;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there is no area formula of the general inscribed n-gon for n >= 5 only by using arithmetic operations and k-th roots of its side lengths in classical geometry.
引用
收藏
页码:557 / 572
页数:16
相关论文
共 50 条
  • [1] On the maximum area of inscribed polygons
    Ismailescu, Dan
    Kim, Min Jung
    Wang, Eric
    ELEMENTE DER MATHEMATIK, 2021, 76 (02) : 45 - 61
  • [2] CYCLIC POLYGONS IN CLASSICAL GEOMETRY
    Guo, Ren
    Sonmez, Nilgun
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (02): : 185 - 194
  • [3] On Polygons Inscribed in Other Polygons
    Pamfilos, Paris
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2011, 15 (02): : 141 - 158
  • [4] CYCLIC POLYGONS IN CLASSICAL GEOMETRY, II
    Guo, Ren
    Sonmez, Nilgun
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2025, 78 (02): : 159 - 170
  • [5] PERIMETERS OF INSCRIBED POLYGONS
    BARBARA, R
    AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (01): : 76 - 77
  • [6] POLYGONS WITH INSCRIBED CIRCLES
    HOLZSAGER, R
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (10): : 1019 - 1020
  • [7] ON THE EXISTENCE OF INSCRIBED POLYGONS
    Lim, So Yeon
    Jin, Hong Sung
    Lee, Kwang Seuk
    Park, Myeongsoo
    Kim, Dong-Soo
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (01): : 83 - 91
  • [8] Multiscale contour segmentation and approximation: An algorithm based on the geometry of regular inscribed polygons
    Bergevin, R
    Mokhtari, M
    COMPUTER VISION AND IMAGE UNDERSTANDING, 1998, 71 (01) : 55 - 73
  • [9] The Pentagram Integrals on Inscribed Polygons
    Schwartz, Richard Evan
    Tabachnikov, Serge
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [10] Inscribed polygons and Heron polynomials
    Varfolomeev, VV
    SBORNIK MATHEMATICS, 2003, 194 (3-4) : 311 - 331