A proof of the compositional Delta conjecture

被引:13
|
作者
D'Adderio, Michele [1 ]
Mellit, Anton [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecory 5, I-56127 Pisa, Italy
[2] Univ Vienna, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Delta conjecture; Theta operators; Dyck path algebra; Macdonald polynomials;
D O I
10.1016/j.aim.2022.108342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a compositional refinement of the Delta conjecture (rise version) of Haglund, Remmel and Wilson [16] for triangle'(en-k-1) en which was stated in [8] in terms of Theta operators. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Proof of the Extended Delta Conjecture
    Blasiak, Jonah
    Haiman, Mark
    Morse, Jennifer
    Pun, Anna
    Seelinger, George H.
    FORUM OF MATHEMATICS PI, 2023, 11
  • [2] A Proof of the Delta Conjecture When q=0
    Garsia, Adriano
    Haglund, Jim
    Remmel, Jeffrey B.
    Yoo, Meesue
    ANNALS OF COMBINATORICS, 2019, 23 (02) : 317 - 333
  • [3] A proof on Melnikov's conjecture for case cap delta = 4
    Wang, W.
    Zhang, K.
    Chinese Science Bulletin, 43 (04):
  • [4] A proof of the 4-variable Catalan polynomial of the Delta conjecture
    Zabrocki, Mike
    JOURNAL OF COMBINATORICS, 2019, 10 (04) : 599 - 632
  • [5] On conjecture and proof
    Gilman, JJ
    MRS BULLETIN, 1997, 22 (11) : 9 - 9
  • [6] A Proof of the Extended Delta Conjecture (vol 11, E6, 2023)
    Blasiak, J.
    Haiman, M.
    Morse, J.
    Pun, A.
    Seelinger, G.
    FORUM OF MATHEMATICS PI, 2023, 11
  • [7] THE DELTA CONJECTURE
    Haglund, J.
    Remmel, J. B.
    Wilson, A. T.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) : 4029 - 4057
  • [8] A Proof of the Molecular Conjecture
    Katoh, Naoki
    Tanigawa, Shin-ichi
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 296 - 305
  • [9] Proof of a conjecture of Metsch
    Szonyi, Tamas
    Weiner, Zsuzsa
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 2066 - 2070
  • [10] PROOF OF A CONJECTURE OF BERNSTEIN
    TADIC, M
    MATHEMATISCHE ANNALEN, 1985, 272 (01) : 11 - 16