A NOTE ON CONVERGENCE IN FUZZY METRIC SPACES

被引:0
|
作者
Gregori, V. [1 ]
Minana, J. J. [1 ]
Morillas, S. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
来源
IRANIAN JOURNAL OF FUZZY SYSTEMS | 2014年 / 11卷 / 04期
关键词
Fuzzy metric space; principal fuzzy metric; p-convergence; IMPULSE NOISE; PEER GROUPS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The sequential p-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called s-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are s-convergent. In such a case M is called an s-fuzzy metric. If (N-M.,*) is a fuzzy metric on X where N-M(x, y) = Lambda{M(x, y, t) : t>0} then it is proved that the topologies deduced from M and N-M coincide if and only if M is an s-fuzzy metric.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [1] A note on local bases and convergence in fuzzy metric spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Morillas, Samuel
    TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 142 - 148
  • [2] On convergence in fuzzy metric spaces
    Gregori, Valentin
    Lopez-Crevillen, Andres
    Morillas, Samuel
    Sapena, Almanzor
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3002 - 3006
  • [3] Strong Convergence in Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    FILOMAT, 2017, 31 (06) : 1619 - 1625
  • [4] Cauchyness and convergence in fuzzy metric spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Morillas, Samuel
    Sapena, Almanzor
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 25 - 37
  • [5] Cauchyness and convergence in fuzzy metric spaces
    Valentín Gregori
    Juan-José Miñana
    Samuel Morillas
    Almanzor Sapena
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 25 - 37
  • [6] On statistical convergence in fuzzy metric spaces
    Li, Changqing
    Zhang, Yanlan
    Zhang, Jing
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3987 - 3993
  • [7] On statistical convergence in fuzzy metric spaces
    Li, Changqing
    Zhang, Yanlan
    Zhang, Jing
    Journal of Intelligent and Fuzzy Systems, 2020, 39 (03): : 3987 - 3993
  • [8] A note on the completions of fuzzy metric spaces and fuzzy normed spaces
    Fang, JX
    FUZZY SETS AND SYSTEMS, 2002, 131 (03) : 399 - 407
  • [9] A note on intuitionistic fuzzy metric spaces
    Gregori, V
    Romaguera, S
    Veeramani, P
    CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 902 - 905
  • [10] A Note on Extension of Fuzzy Metric Spaces
    Zheng, Dingwei
    He, Qingming
    MATHEMATICS, 2023, 11 (24)