Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants

被引:111
|
作者
Corgnale, Claudio [1 ]
Hardy, Bruce [1 ]
Motyka, Theodore [1 ]
Zidan, Ragaiy [1 ]
Teprovich, Joseph [1 ]
Peters, Brent [1 ]
机构
[1] Savannah River Natl Lab, Aiken, SC 29808 USA
来源
关键词
Concentrating solar power; Thermal energy storage; Hydrogen storage; Metal hydrides; Techno-economic analysis; HYDROGEN STORAGE; MAGNESIUM HYDRIDE; HEAT; THERMODYNAMICS;
D O I
10.1016/j.rser.2014.07.049
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Concentrating solar power plants represent a competitive option to produce electric power only if equipped with suitable thermal energy storage. Metal hydride material-based thermochemical hydrogen storage is a very attractive solution to store high temperature solar thermal energy. A literature review of some of the past and more recent investigations on using metal hydrides for thermal energy storage has been carried out. Based on findings from this review and new material property data, a preliminary material techno-economic analysis was performed to select the most promising candidate metal hydrides as well as to examine their behavior under different operating conditions. The performance was evaluated adopting simplified system models and the results were compared against the US Department of Energy targets including installed cost, exergetic efficiency, operating temperature and volumetric energy density. Selected sensitivity analyses for the most promising materials have also been carried out in order to evaluate the influence of solar plant and material properties on the overall system installed cost. Results demonstrated that the selected storage systems, based on currently available metal hydride high temperature materials (i.e. NaMgH3, TiH2 and CaH2), are able to achieve and exceed many of the targets such as volumetric energy density (25 kWhth/m(3)) and operating temperature (600 degrees C). Material modifications as well as heat exchange system improvements are also discussed in the paper, with the aim of reducing the overall thermal energy storage specific cost and helping to meet and exceed all of the targets. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:821 / 833
页数:13
相关论文
共 50 条
  • [1] PERFORMANCE ANALYSIS OF A METAL HYDRIDE-THERMAL ENERGY STORAGE SYSTEM FOR CONCENTRATING SOLAR POWER PLANTS
    Alqahtani, Talal
    Mellouli, Sofiene
    Askri, Faouzi
    Phelan, Patrick E.
    [J]. 4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [2] Numerical simulation of metal hydride based thermal energy storage system for concentrating solar power plants
    Bhogilla, Satya Sekhar
    [J]. RENEWABLE ENERGY, 2021, 172 : 1013 - 1020
  • [3] High performance metal hydride based thermal energy storage systems for concentrating solar power applications
    Ward, Patrick A.
    Corgnale, Claudio
    Teprovich, Joseph A., Jr.
    Motyka, Theodore
    Hardy, Bruce
    Peters, Brent
    Zidan, Ragaiy
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 645 : S374 - S378
  • [4] Metal hydride based thermal energy storage system requirements for high performance concentrating solar power plants
    Corgnale, Claudio
    Hardy, Bruce
    Motyka, Theodore
    Zidan, Ragaiy
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) : 20217 - 20230
  • [5] Thermal energy storage technologies and systems for concentrating solar power plants
    Kuravi, Sarada
    Trahan, Jamie
    Goswami, D. Yogi
    Rahman, Muhammad M.
    Stefanakos, Elias K.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (04) : 285 - 319
  • [6] THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS
    Kuravi, Sarada
    Goswami, Yogi
    Stefanakos, Elias K.
    Ram, Manoj
    Jotshi, Chand
    Pendyala, Swetha
    Trahan, Jamie
    Sridharan, Prashanth
    Rahman, Muhammad
    Krakow, Burton
    [J]. TECHNOLOGY AND INNOVATION, 2012, 14 (02) : 81 - 91
  • [7] Performance analysis of a thermal energy storage system based on paired metal hydrides for concentrating solar power plants
    Mellouli, Sofiene
    Askri, Faouzi
    Edacherian, Abhilash
    Alqahtani, Talal
    Algarni, Salem
    Abdelmajid, Jemni
    Phelan, Patrick
    [J]. APPLIED THERMAL ENGINEERING, 2018, 144 : 1017 - 1029
  • [8] Metal hydride thermal heat storage prototype for concentrating solar thermal power
    Paskevicius, M.
    Sheppard, D. A.
    Williamson, K.
    Buckley, C. E.
    [J]. ENERGY, 2015, 88 : 469 - 477
  • [9] Metal hydrides for concentrating solar thermal power energy storage
    Sheppard, D. A.
    Paskevicius, M.
    Humphries, T. D.
    Felderhoff, M.
    Capurso, G.
    von Colbe, J. Bellosta
    Dornheim, M.
    Klassen, T.
    Ward, P. A.
    Teprovich, J. A., Jr.
    Corgnale, C.
    Zidan, R.
    Grant, D. M.
    Buckley, C. E.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (04):
  • [10] Metal hydrides for concentrating solar thermal power energy storage
    D. A. Sheppard
    M. Paskevicius
    T. D. Humphries
    M. Felderhoff
    G. Capurso
    J. Bellosta von Colbe
    M. Dornheim
    T. Klassen
    P. A. Ward
    J. A. Teprovich
    C. Corgnale
    R. Zidan
    D. M. Grant
    C. E. Buckley
    [J]. Applied Physics A, 2016, 122