Phonon Transport through Point Contacts between Graphitic Nanomaterials

被引:65
|
作者
Yang, Juekuan [1 ,2 ,3 ]
Shen, Meng [4 ]
Yang, Yang [3 ]
Evans, William J. [5 ]
Wei, Zhiyong [1 ,2 ]
Chen, Weiyu [1 ,2 ]
Zinn, Alfred A. [6 ]
Chen, Yunfei [1 ,2 ]
Prasher, Ravi [7 ,8 ]
Xu, Terry T. [9 ]
Keblinski, Pawel [4 ]
Li, Deyu [3 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Jiangsu Key Lab Design & Mfg Micronano Biomed Ins, Nanjing 210096, Jiangsu, Peoples R China
[3] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[4] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[5] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA
[6] Lockheed Martin Space Syst Co, Adv Technol Ctr, Palo Alto, CA 94304 USA
[7] Sheetak Inc, Austin, TX 78744 USA
[8] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[9] Univ N Carolina, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; CARBON NANOTUBES; PYROLYTIC-GRAPHITE; SILICON NANOWIRES; GRAPHENE; RESISTANCE; CONDUCTANCE; COMPOSITES;
D O I
10.1103/PhysRevLett.112.205901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurements of thermal transport through contacts between individual multiwall carbon nanotubes show that, contrary to common expectation, the normalized contact thermal conductance per unit area depends linearly on the tube diameter. The result is corroborated with and extended to multilayer graphene nanoribbons through molecular dynamics simulations. Semiquantitative analyses show that these intriguing observations are consistent with an explanation based on an unexpectedly large phonon mean free path in the c-axis direction of graphite, phonon reflection at free surfaces, and phonon focusing in highly anisotropic graphitic materials.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] RESONANCE (SURFACE) PHONON TRANSPORT THROUGH POINT CONTACTS
    FEHER, A
    STEFANYI, P
    ZABOJ, R
    SHKORBATOV, AG
    HELVETICA PHYSICA ACTA, 1992, 65 (2-3): : 456 - 457
  • [2] Phonon transport in pressure-made point contacts
    Shkorbatov, AG
    Stefanyi, P
    Bystrenova, E
    Feher, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (37) : 8313 - 8326
  • [3] Transport through quantum point contacts
    Meir, Y
    NANOPHYSICS: COHERENCE AND TRANSPORT, 2005, 81 : 479 - +
  • [4] Transport Through Magnetic Quantum Point Contacts
    Day, Timothy E.
    Cummings, Aron W.
    Burke, Adam M.
    Ferry, David K.
    Goodnick, Stephen M.
    Reno, John L.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 911 - 914
  • [5] Transport Through Magnetic Quantum Point Contacts
    Day, Timothy E.
    Cummings, Aron
    Burke, Adam M.
    Reno, John L.
    Ferry, David K.
    Goodnick, Stephen M.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 364 - +
  • [6] Electron transport through quantum wires and point contacts
    Havu, P
    Puska, MJ
    Nieminen, RM
    Havu, V
    PHYSICAL REVIEW B, 2004, 70 (23): : 1 - 4
  • [7] Ballistic transport through quantum point contacts of multiorbital oxides
    Settino, J.
    Citro, R.
    Romeo, F.
    Cataudella, V
    Perroni, C. A.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [8] PHONON-PHONON RELAXATION AND THERMOELECTRIC EFFECTS IN POINT CONTACTS
    SHKORBATOV, AG
    SARKISYANTS, TZ
    FIZIKA NIZKIKH TEMPERATUR, 1990, 16 (06): : 725 - 737
  • [9] A Reexamination of Phonon Transport Through a Nanoscale Point Contact in Vacuum
    Pettes, Michael Thompson
    Shi, Li
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (03):
  • [10] Green's Function Methods for Phonon Transport Through Nano-Contacts
    Mingo, Natalio
    THERMAL NANOSYSTEMS AND NANOMATERIALS, 2009, 118 : 63 - 94