Precursory dynamics in threshold systems

被引:0
|
作者
Martins, JSS
Rundle, JB
Anghel, M
Klein, W
机构
[1] Univ Colorado, Colorado Ctr Chaos & Complex, CIRES, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 05期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A precursory dynamics, motivated by the analysis of recent experiments on solid-on-solid friction, is introduced in a continuous cellular automaton that mimics the physics of earthquake source processes. The resulting system of equations for the interevent cycle can be decoupled and yields an analytical solution in the mean-field limit, exhibiting a smoothing effect of the dynamics on the stress field. Simulation results show the resulting departure from scaling at the large-event end of the frequency distribution, and support claims that the field leakage may parametrize the superposition of scaling and characteristic regimes observed in real earthquake faults.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Linear pattern dynamics in nonlinear threshold systems
    Rundle, John B.
    Klein, W.
    Tiampo, Kristy
    Gross, Susanna
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (03): : 2418 - 2431
  • [2] Excitable dynamics and threshold sets in nonlinear systems
    Voslar, M
    Schreiber, I
    PHYSICAL REVIEW E, 2004, 69 (02): : 026210 - 1
  • [3] Dynamics of systems with quadratic nonlinearity and the threshold coupling
    Koronovskii, AA
    Ponomarenko, VI
    Trubetskov, DI
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1996, 22 (19): : 60 - 64
  • [4] Linear pattern dynamics in nonlinear threshold systems
    Rundle, JB
    Klein, W
    Tiampo, K
    Gross, S
    PHYSICAL REVIEW E, 2000, 61 (03): : 2418 - 2431
  • [5] Threshold-based epidemic dynamics in systems with memory
    Bodych, Marcin
    Ganguly, Niloy
    Krueger, Tyll
    Mukherjee, Animesh
    Siegmund-Schultze, Rainer
    Sikdar, Sandipan
    EPL, 2016, 116 (04)
  • [6] Dynamics below the depinning threshold in disordered elastic systems
    Kolton, Alejandro B.
    Rosso, Alberto
    Giamarchi, Thierry
    Krauth, Werner
    PHYSICAL REVIEW LETTERS, 2006, 97 (05)
  • [7] Mean-field threshold systems and phase dynamics: An application to earthquake fault systems
    Tiampo, KF
    Rundle, JB
    McGinnis, S
    Gross, SJ
    Klein, W
    EUROPHYSICS LETTERS, 2002, 60 (03): : 481 - 487
  • [8] Stress levels of precursory strain localization subsequent to the crack damage threshold in brittle rock
    Gogus, Ozge Dinc
    Avsar, Elif
    PLOS ONE, 2022, 17 (11):
  • [9] A Method for Increasing the Accuracy in Calculating the Characteristics of Complex Dynamics of Threshold Systems
    O. N. Pavlova
    A. N. Pavlov
    Technical Physics Letters, 2018, 44 : 684 - 686
  • [10] THRESHOLD PHENOMENON IN MULTI-RHYTHM SYSTEMS - TRANSITION IN CAUSAL DYNAMICS
    AIZAWA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (02): : 687 - 689