2,7-Bis(5-bromo-4-hexylthiophen-2-yl)-9H-fluoren-9-one (DTFO) was synthesized as a new electron-accepting material in semiconducting polymers for use in photovoltaic devices. The synthesized DTFO was polymerized with two different electron-donating counter monomers: 2,7-dibromo-9,9-dioctyl-9H-fluorene (DOF) and 2,6-bis(trimethyltin)-4,8-di(2-ethylhexyloxyl) benzo [ 1,2-b: 4,5-b'] dithiophene (BDT). Two alternating copolymers, poly(DTFO-alt-DOF) and poly(DTFO-alt-BDT), were synthesized through the Suzuki and Stille coupling polymerizations, respectively. The synthesized polymers exhibited good solubility in common solvents and show good thermal stability up to 350 degrees C. The optical band gap energies of poly(DTFO-alt-DOF) and poly(DTFO-alt-BDT) were determined to be 2.44 and 2.23 eV, respectively. The positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the polymers were determined by cyclic voltammetry (CV). One of these devices showed a power conversion efficiency of 0.50%, with an open-circuit voltage of 0.67 V, a short-circuit current of 2.34 mA/cm(2), and a fill factor of 0.30 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm(2)).