Computationally efficient optic nerve head detection in retinal fundus images

被引:30
|
作者
Pourreza-Shahri, Reza [1 ]
Tavakoli, Meysam [2 ]
Kehtarnavaz, Nasser [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Oklahoma State Univ, Stillwater, OK 74078 USA
关键词
Computationally efficient optic nerve head detection; Radon transformation; Color retinal fundus images; Fluorescein angiography retinal fundus images; DISC DETECTION; AUTOMATED LOCALIZATION; FEATURE-EXTRACTION; SEGMENTATION; MODEL; VESSELS; PHOTOGRAPHS; TRACKING;
D O I
10.1016/j.bspc.2014.02.011
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a computationally efficient method for detection of optic nerve head in both color and fluorescein angiography retinal fundus images. It involves Radon transformation of multi-overlapping windows within an optimization framework in order to achieve computational efficiency as well as high detection rates in the presence of various structural, color, and intensity variations in such images. Three databases of STARE, DRIVE, and a local database have been examined. It is shown that this method provides high detection rates while achieving faster processing speeds than the existing methods that have reported comparable detection rates. For example, the detection rate for the STARE database which is the most widely used database is found to be 96.3% with a processing time of about 3 s per image. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 50 条
  • [1] Model-based Optic Nerve Head Segmentation on Retinal Fundus Images
    Yin, Fengshou
    Liu, Jiang
    Ong, Sim Heng
    Sun, Ying
    Wong, Damon W. K.
    Ngan Meng Tan
    Cheung, Carol
    Baskaran, Mani
    Aung, Tin
    Wong, Tien Yin
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2626 - 2629
  • [2] Automated Optic Nerve Head Detection in Fluorescein Angiography Fundus Images
    Tavakoli, M.
    Toosi, M. H. Bahreini
    Pourreza, R.
    Banaee, T.
    Pourreza, H. R.
    [J]. 2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3057 - 3060
  • [3] A machine learning approach to optic nerve head detection in widefield fundus images
    Meng, Kevin
    Leahy, Conor
    Bagherinia, Homayoun
    Lee, Gary C.
    De Sisternes, Luis
    Shemonski, Nathan
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [4] Localization Of The Optic Nerve Head In Color Fundus Images
    Malinsky, M.
    Kolar, R.
    Jan, J.
    [J]. ANALYSIS OF BIOMEDICAL SIGNALS AND IMAGES, 2008, : 593 - 599
  • [5] Effect of Two Different Preprocessing Steps in Detection of Optic Nerve Head in Fundus Images
    Tavakoli, Meysam
    Nazar, Mahdieh
    Mehdizadeh, Alireza
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [6] Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles
    Xiaolu Zhu
    Rangaraj M. Rangayyan
    Anna L. Ells
    [J]. Journal of Digital Imaging, 2010, 23 : 332 - 341
  • [7] Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles
    Zhu, Xiaolu
    Rangayyan, Rangaraj M.
    Ells, Anna L.
    [J]. JOURNAL OF DIGITAL IMAGING, 2010, 23 (03) : 332 - 341
  • [8] Optic nerve head segmentation using fundus images and optical coherence tomography images for glaucoma detection
    Babu, T. R. Ganesh
    Devi, S. Shenbaga
    Venkatesh, R.
    [J]. BIOMEDICAL PAPERS-OLOMOUC, 2015, 159 (04): : 607 - 615
  • [9] Methods for the Detection of Blood Vessels in Retinal Fundus Images and Reduction of False-Positive Pixels Around the Optic Nerve Head
    Dhara, Ashis K.
    Rangayyan, Rangaraj M.
    Oloumi, Faraz
    Mukhopadhyay, Sudipta
    [J]. 2013 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2013,
  • [10] Neural Networks for Optic Nerve Detection in Digital Optic Fundus Images
    Constante, P.
    Gordon, A.
    Chang, O.
    Pruna, E.
    Escobar, I.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON AUTOMATICA (ICA-ACCA), 2016,