Local and global regularized sparse coding for data representation

被引:11
|
作者
Shu, Zhenqiu [1 ]
Zhou, Jun [2 ]
Huang, Pu [3 ]
Yu, Xun [2 ]
Yang, Zhangjing [4 ]
Zhao, Chunxia [5 ]
机构
[1] Jiangsu Univ Technol, Sch Comp Engn, Changzhou 213001, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Comp Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Audit Univ, Sch Technol, Nanjing 211815, Jiangsu, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse coding; Data representation; Regularizer; Regression; Clustering; DIMENSIONALITY REDUCTION; FACE RECOGNITION; EIGENFACES; ALGORITHM;
D O I
10.1016/j.neucom.2015.10.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, sparse coding has been widely adopted for data representation in real-world applications. In order to consider the geometric structure of data, we propose a novel method, local and global regularized sparse coding (LGSC), for data representation. LGSC not only models the global geometric structure by a global regression regularizer, but also takes into account the manifold structure using a local regression regularizer. Compared with traditional sparse coding methods, the proposed method can preserve both global and local geometric structures of the original high-dimensional data in a new representation space. Experimental results on benchmark datasets show that the proposed method can improve the performance of clustering. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 197
页数:10
相关论文
共 50 条
  • [1] Structure regularized sparse coding for data representation
    Wang, Xiaoming
    Wang, Shitong
    Huang, Zengxi
    Du, Yajun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 174 : 87 - 102
  • [2] Multiple graph regularized sparse coding and multiple hypergraph regularized sparse coding for image representation
    Jin, Taisong
    Yu, Zhengtao
    Li, Lingling
    Li, Cuihua
    [J]. NEUROCOMPUTING, 2015, 154 : 245 - 256
  • [3] Graph Regularized Sparse Coding for Image Representation
    Zheng, Miao
    Bu, Jiajun
    Chen, Chun
    Wang, Can
    Zhang, Lijun
    Qiu, Guang
    Cai, Deng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (05) : 1327 - 1336
  • [4] GRAPH REGULARIZED TENSOR SPARSE CODING FOR IMAGE REPRESENTATION
    Jiang, Fei
    Liu, Xiao-Yang
    Lu, Hongtao
    Shen, Ruimin
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 67 - 72
  • [5] Dual Graph Regularized Sparse Coding for Image Representation
    Sha, Lingdao
    Schonfeld, Dan
    [J]. 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [6] Manifold Regularized Local Sparse Representation for Face Recognition
    Wang, Lingfeng
    Wu, Huaiyu
    Pan, Chunhong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (04) : 651 - 659
  • [7] Structure Preserving Sparse Coding for Data Representation
    Zhenqiu Shu
    Xiao-jun Wu
    Cong Hu
    [J]. Neural Processing Letters, 2018, 48 : 1705 - 1719
  • [8] Structure Preserving Sparse Coding for Data Representation
    Shu, Zhenqiu
    Wu, Xiao-jun
    Hu, Cong
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (03) : 1705 - 1719
  • [9] Data Representation by Joint Hypergraph Embedding and Sparse Coding
    Zhong, Guo
    Pun, Chi-Man
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2106 - 2119
  • [10] Nuclear Norm Regularized Sparse Coding
    Luo, Lei
    Yang, Jian
    Qian, Jianjun
    Yang, Jingyu
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1834 - 1839