Computation Through Neural Population Dynamics

被引:225
|
作者
Vyas, Saurabh [1 ,3 ]
Golub, Matthew D. [2 ,3 ]
Sussillo, David [2 ,3 ,4 ]
Shenoy, Krishna V. [1 ,2 ,3 ,5 ,6 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Wu Tsai Neurosci Inst, Stanford, CA 94305 USA
[4] Google Inc, Google AI, Stanford, CA 94305 USA
[5] Stanford Univ, BioX Inst, Neurosci Program, Dept Neurobiol, Stanford, CA 94305 USA
[6] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
来源
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
neural computation; neural population dynamics; dynamical systems; state spaces; BRAIN-COMPUTER INTERFACE; PREMOTOR CORTEX; MOTOR CORTEX; TRANSIENT DYNAMICS; PREPARATORY ACTIVITY; MOVEMENT PREPARATION; VISUAL CATEGORIES; COHERENT PATTERNS; NEURONAL DYNAMICS; PRIOR INFORMATION;
D O I
10.1146/annurev-neuro-092619-094115
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover the nature of the associated computations, how they are implemented, and what role they play in driving behavior. We term this computation through neural population dynamics. If successful, this framework will reveal general motifs of neural population activity and quantitatively describe how neural population dynamics implement computations necessary for driving goal-directed behavior. Here, we start with a mathematical primer on dynamical systems theory and analytical tools necessary to apply this perspective to experimental data. Next, we highlight some recent discoveries resulting from successful application of dynamical systems. We focus on studies spanning motor control, timing, decision-making, and working memory. Finally, we briefly discuss promising recent lines of investigation and future directions for the computation through neural population dynamics framework.
引用
收藏
页码:249 / 275
页数:27
相关论文
共 50 条
  • [1] Neural Population Dynamics Underlying Expected Value Computation
    Yamada, Hiroshi
    Imaizumi, Yuri
    Matsumoto, Masayuki
    [J]. JOURNAL OF NEUROSCIENCE, 2021, 41 (08): : 1684 - 1698
  • [2] Multitask computation through dynamics in recurrent spiking neural networks
    Pugavko, Mechislav M.
    Maslennikov, Oleg V.
    Nekorkin, Vladimir I.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Multitask computation through dynamics in recurrent spiking neural networks
    Mechislav M. Pugavko
    Oleg V. Maslennikov
    Vladimir I. Nekorkin
    [J]. Scientific Reports, 13
  • [4] The role of population structure in computations through neural dynamics
    Alexis Dubreuil
    Adrian Valente
    Manuel Beiran
    Francesca Mastrogiuseppe
    Srdjan Ostojic
    [J]. Nature Neuroscience, 2022, 25 : 783 - 794
  • [5] The role of population structure in computations through neural dynamics
    Dubreuil, Alexis
    Valente, Adrian
    Beiran, Manuel
    Mastrogiuseppe, Francesca
    Ostojic, Srdjan
    [J]. NATURE NEUROSCIENCE, 2022, 25 (06) : 783 - +
  • [6] DYNAMICS AND NEURAL NETWORK COMPUTATION
    HOPFIELD, JJ
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1990, : 633 - 644
  • [7] Computation through Cortical Dynamics
    Driscoll, Laura N.
    Golub, Matthew D.
    Sussillo, David
    [J]. NEURON, 2018, 98 (05) : 873 - 875
  • [8] Neural computation with efficient population codes
    Brian J Fischer
    [J]. BMC Neuroscience, 14 (Suppl 1)
  • [9] Neural correlations, population coding and computation
    Bruno B. Averbeck
    Peter E. Latham
    Alexandre Pouget
    [J]. Nature Reviews Neuroscience, 2006, 7 : 358 - 366
  • [10] Neural correlations, population coding and computation
    Averbeck, BB
    Latham, PE
    Pouget, A
    [J]. NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) : 358 - 366