Cell tracking using deep neural networks with multi-task learning

被引:57
|
作者
He, Tao [1 ]
Mao, Hua [1 ]
Guo, Jixiang [1 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
Cell tracking; Deep learning; Convolutional Neural Networks; Multi-task learning; SEGMENTATION; NUCLEI;
D O I
10.1016/j.imavis.2016.11.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cell tracking plays crucial role in biomedical and computer vision areas. As cells generally have frequent deformation activities and small sizes in microscope image, tracking the non-rigid and non-significant cells is quite difficult in practice. Traditional visual tracking methods have good performances on tracking rigid and significant visual objects, however, they are not suitable for cell tracking problem. In this paper, a novel cell tracking method is proposed by using Convolutional Neural Networks (CNNs) as well as multi-task learning (MTL) techniques. The CNNs learn robust cell features and MTL improves the generalization performance of the tracking. The proposed cell tracking method consists of a particle filter motion model, a multi-task learning observation model, and an optimized model update strategy. In the training procedure, the cell tracking is divided into an online tracking task and an accompanying classification task using the MTL technique. The observation model is trained by building a CNN to learn robust cell features. The tracking procedure is started by assigning the cell position in the first frame of a microscope image sequence. Then, the particle filter model is applied to produce a set of candidate bounding boxes in the subsequent frames. The trained observation model provides the confidence probabilities corresponding to all of the candidates and selects the candidate with the highest probability as the final prediction. Finally, an optimized model update strategy is proposed to enable the multi-task observation model for the variation of the tracked cell over the entire tracking procedure. The performance and robustness of the proposed method are analyzed by comparing with other commonly-used methods. Experimental results demonstrate that the proposed method has good performance to the cell tracking problem. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [1] Evolving Deep Parallel Neural Networks for Multi-Task Learning
    Wu, Jie
    Sun, Yanan
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 517 - 531
  • [2] Optical multi-task learning using multi-wavelength diffractive deep neural networks
    Duan, Zhengyang
    Chen, Hang
    Lin, Xing
    [J]. NANOPHOTONICS, 2023, 12 (05) : 893 - 903
  • [3] Multi-Adaptive Optimization for multi-task learning with deep neural networks
    Hervella, alvaro S.
    Rouco, Jose
    Novo, Jorge
    Ortega, Marcos
    [J]. NEURAL NETWORKS, 2024, 170 : 254 - 265
  • [4] Deep Convolutional Neural Networks for Multi-Instance Multi-Task Learning
    Zeng, Tao
    Ji, Shuiwang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 579 - 588
  • [5] MULTI-TASK LEARNING IN DEEP NEURAL NETWORKS FOR IMPROVED PHONEME RECOGNITION
    Seltzer, Michael L.
    Droppo, Jasha
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6965 - 6969
  • [6] Rapid Adaptation for Deep Neural Networks through Multi-Task Learning
    Huang, Zhen
    Li, Jinyu
    Siniscalchi, Sabato Marco
    Chen, I-Fan
    Wu, Ji
    Lee, Chin-Hui
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3625 - 3629
  • [7] A Deep Neural Networks Based on Multi-task Learning and Its Application
    Zhao, Mengru
    Zhang, Yuxian
    Qiao, Likui
    Sun, Deyuan
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6201 - 6206
  • [8] MULTI-TASK LEARNING FOR SEGMENTATION OF BUILDING FOOTPRINTS WITH DEEP NEURAL NETWORKS
    Bischke, Benjamin
    Helber, Patrick
    Folz, Joachim
    Borth, Damian
    Dengel, Andreas
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1480 - 1484
  • [9] Multi-task Learning Deep Neural Networks For Speech Feature Denoising
    Huang, Bin
    Ke, Dengfeng
    Zheng, Hao
    Xu, Bo
    Xu, Yanyan
    Su, Kaile
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 2464 - 2468
  • [10] Convex Multi-Task Learning with Neural Networks
    Ruiz, Carlos
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2022, 2022, 13469 : 223 - 235