Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient

被引:16
|
作者
Abdi, Hamid [1 ]
Ait Messaoudene, Noureddine [1 ]
Kolsi, Lioua [2 ,3 ]
Naceur, Mohamed Wahib [4 ]
机构
[1] Univ BLIDA1, Fac Technol, Lab Applicat Energet Hydrogene LApEH, BP 270,Route Soumaa, Blida, Algeria
[2] Hail Univ, Coll Engn, Dept Mech Engn, Hail, Saudi Arabia
[3] Univ Monastir, Natl Engn Sch Monastir, Res Lab Metrol & Energy Syst, Monastir, Tunisia
[4] Univ BLIDA1, Fac Technol, Lab Eau Environm & Dev Durable 2E2D, BP 270,Route Soumaa, Blida, Algeria
关键词
PEMFC; Parameter identification; Current– voltage; Particle swarm optimization; Constriction coefficient; PEMFC MODEL; PARAMETER OPTIMIZATION; IDENTIFICATION; SIMULATION;
D O I
10.1007/s10973-020-10370-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
The present study aims at estimating the values of an electrochemical model parameter of a proton exchange membrane fuel cell (PEMFC). A variant of the particle swarm optimization (PSO) algorithm is adopted. This variant introduces a constriction coefficient to better regulate the convergence of the numerical code. Parameters' identification of the PEMFC stack model is performed by specifying a range for each. Validity of the adopted approach is confirmed by confronting simulation results with experimental data in terms of current-voltage polarization curves. It should be noted that the optimal value of the objective function is largely affected by the lower and upper values of the parameters. Comparison of present results with other optimization methods shows a noticeable improvement in PEMFC stack performance when using particle swarm optimization algorithm with constriction coefficient (PSO-chi). This confirms that this version of PSO algorithm is very suitable for the optimization and parameter estimation of PEMFC stack modeling.
引用
收藏
页码:1749 / 1759
页数:11
相关论文
共 50 条
  • [1] Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient
    Hamid Abdi
    Noureddine Ait Messaoudene
    Lioua Kolsi
    Mohamed Wahib Naceur
    [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144 : 1749 - 1759
  • [2] Proton exchange membrane fuel cell modeling based on adaptive focusing particle swarm optimization
    Li Qi
    Chen Weirong
    Jia Junbo
    Thean, Cham Yew
    Han Ming
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2009, 1 (01)
  • [3] Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
    Ye, Meiyinq
    Wang, Xiaodong
    Xu, Yousheng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 981 - 989
  • [4] A Tribe Particle Swarm Optimization for Parameter Identification of Proton Exchange Membrane Fuel Cell
    Sedighizadeh, M.
    Kashani, M. Farhangian
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2015, 28 (01): : 16 - 24
  • [5] Proton Exchange Membrane Fuel Cell Modeling Based on Seeker Optimization Algorithm
    李奇
    戴朝华
    陈维荣
    贾俊波
    韩明
    [J]. Railway Engineering Science, 2008, (02) : 120 - 124
  • [6] Particle swarm optimization based predictive control of proton exchange membrane fuel cell (PEMFC)
    Ren Y.
    Cao G.-Y.
    Zhu X.-J.
    [J]. Journal of Zhejiang University: Science, 2006, 7 (03): : 458 - 462
  • [7] Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC)
    任远
    曹广益
    朱新坚
    [J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, (03) : 458 - 462
  • [8] Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm
    Zaky, Alaa A.
    Ghoniem, Rania M.
    Selim, F.
    [J]. SUSTAINABILITY, 2023, 15 (13)
  • [9] Parameter Estimation of Proton Exchange Membrane Fuel Cell Model Using Chaotic Embedded Particle Swarm Optimization Technique
    Mitra U.
    Arya A.
    Gupta S.
    Paliwal P.
    Verma A.
    [J]. SN Computer Science, 4 (5)
  • [10] Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network
    Hu, Peng
    Cao, Guang-Yi
    Zhu, Xin-Jian
    Li, Jun
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2010, 18 (05) : 574 - 588