Rotation-invariant texture retrieval with Gaussianized steerable pyramids

被引:58
|
作者
Tzagkarakis, George [1 ]
Beferull-Lozano, Baltasar
Tsakalides, Panagiotis
机构
[1] Univ Crete, Dept Comp Sci, Iraklion 71110, Crete, Greece
[2] Inst Comp Sci ICS FORTH, Iraklion 71110, Crete, Greece
[3] Univ Valencia, Grp Informat & Commun Syst, Escuela Tecn Super Ingn, Inst Robot, Valencia, Spain
关键词
fractional lower-order moments (FLOMs); rotation-invariant Kullback-Leibler divergence (KLD); statistical image retrieval; steerable model; sub-Gaussian distribution;
D O I
10.1109/TIP.2006.877356
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel rotation-invariant image retrieval scheme based on a transformation of the texture information via a steerable pyramid. First, we fit the distribution of the subband coefficients using a joint alpha-stable sub-Gaussian model to capture their non-Gaussian behavior. Then, we apply a normalization process in order to Gaussianize the coefficients. As a result, the feature extraction step consists of estimating the covariances between the normalized pyramid coefficients. The similarity between two distinct texture images is measured by minimizing a rotation-invariant version of the Kullback-Leibler Divergence between their corresponding multivariate Gaussian distributions, where the minimization is performed over a set of rotation angles.
引用
收藏
页码:2702 / 2718
页数:17
相关论文
共 50 条
  • [1] Rotation-invariant texture retrieval with gaussianized steerable pyramids
    Tzagkarakis, G
    Beferull-Lozano, B
    Tsakalides, P
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 413 - 416
  • [2] ROTATION-INVARIANT TEXTURE RETRIEVAL USING A STEERABLE GAUSSIAN COPULA MODEL
    Rami, Hassan
    El Maliani, Ahmed Drissi
    El Hassouni, Mohammed
    Berthoumieu, Yannick
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2983 - 2987
  • [3] Rotation-invariant and scale-invariant steerable pyramid decomposition for texture image retrieval
    Montoya-Zegarra, Javier A.
    Leite, Neucimar J.
    Torres, Ricardo da S.
    [J]. PROCEEDINGS OF THE XX BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, 2007, : 121 - +
  • [4] Rotation-invariant texture feature for image retrieval
    Pun, CM
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (01) : 24 - 43
  • [5] Rotation-invariant texture retrieval via signature alignment based on steerable sub-Gaussian modeling
    Tzagkarakis, George
    Beferull-Lozano, Baltasar
    Tsakalides, Panagiotis
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (07) : 1212 - 1225
  • [6] Rotation-invariant Texture Retrieval Based on Complementary Features
    Hu, Xuelong
    Wang, Gang
    Wu, Huining
    Lu, Huimin
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 311 - 314
  • [7] Rotation-invariant texture classification using steerable Gabor filter bank
    Pan, W
    Bui, TD
    Suen, CY
    [J]. IMAGE ANALYSIS AND RECOGNITION, 2005, 3656 : 746 - 753
  • [8] Rotation-invariant and scale-invariant Gabor features for texture image retrieval
    Han, Ju
    Ma, Kai-Kuang
    [J]. IMAGE AND VISION COMPUTING, 2007, 25 (09) : 1474 - 1481
  • [9] Rotation-invariant texture recognition
    Montoya-Zegarra, Javier A.
    Papa, Joao P.
    Leite, Neucimar J.
    Torres, Ricardo da Silva
    Falcao, Alexandre X.
    [J]. ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, PT 2, 2007, 4842 : 193 - +
  • [10] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161