Optimal Steady-State Temperature Field in an Experimental Annealing Furnace

被引:5
|
作者
Jadachowski, L. [1 ]
Steinboeck, A. [2 ]
Kugi, A. [1 ]
机构
[1] Vienna Univ Technol, Automat & Control Inst, Christian Doppler Lab Model Based Control Steel I, Gusshausstr 27-29, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Automat & Control Inst, Gusshausstr 27-29, A-1040 Vienna, Austria
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 20期
关键词
Optimal operating point; Distributed-parameter systems; Elliptic quasilinear PDE; Model reduction; FE method; Non-equidistant grid;
D O I
10.1016/j.ifacol.2016.10.123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The computation of an optimal steady-state operating point in an experimental annealing furnace is considered. In particular, the optimum spatial distribution of electric power supplied to IR-lamps is computed to ensure the temperature uniformity in the specimen fillet. A control-oriented reduced-order model of the steady-state 2D temperature distribution is derived and compared with the full-order model. Saturation functions are used to consider input constraints in a tailored optimization problem. The evaluation of the optimal control input is carried out with the full-order model. Uniqueness of the solution of the optimization problem is investigated numerically. The temperature field in the specimen fillet deviates less than 0.4% of the setpoint value if sufficient heating power is available. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 50 条
  • [1] The Steady-state Model of Heating Process in Horizontal Continuous Annealing Furnace
    Zhou, Gang
    Wen, Zhi
    Dou, Ruifeng
    Su, Fuyong
    Fang, Xu
    Zhuang, Weiqi
    Cao, Yong
    [J]. FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 2428 - +
  • [2] Feedforward Control of the Temperature Field in an Experimental Annealing Furnace
    Jadachowski, L.
    Steinboeck, A.
    Kugi, A.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 13790 - 13795
  • [3] STEADY-STATE MODEL FOR CURRENT AND TEMPERATURE DISTRIBUTIONS IN AN ELECTRIC SMELTING FURNACE
    SRIDHAR, E
    LAHIRI, AK
    [J]. STEEL RESEARCH, 1994, 65 (10): : 433 - 437
  • [4] Modeling method of blast furnace wall temperature field based on steady-state heat transfer analysis
    Xu S.
    Pan D.
    Jiang Z.
    Liu S.
    Yu H.
    [J]. Huagong Xuebao/CIESC Journal, 2023, 74 (12): : 4863 - 4880
  • [5] Optimal steady-state design of reactive distillation processes using simulated annealing
    Cheng, Jian-Kai
    Lee, Hao-Yeh
    Huang, Hsiao-Ping
    Yu, Cheng-Ching
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2009, 40 (02) : 188 - 196
  • [6] A SURVEY OF STEADY-STATE MICROELECTRODES AND EXPERIMENTAL APPROACHES TO A VOLTAMMETRIC STEADY-STATE
    ZOSKI, CG
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 296 (02) : 317 - 333
  • [7] Two-temperature steady-state thermodynamics for a radiation field
    Saida, H
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) : 481 - 508
  • [8] AN EXPERIMENTAL STEADY-STATE FOLIATION
    REE, JH
    [J]. JOURNAL OF STRUCTURAL GEOLOGY, 1991, 13 (09) : 1001 - &
  • [9] Modeling of the steady-state temperature field in lava flow levees
    Quareni, F
    Tallarico, A
    Dragoni, M
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2004, 132 (2-3) : 241 - 251
  • [10] Numerical evaluation of the temperature field of steady-state rolling tires
    Tang, Tian
    Johnson, Daniel
    Smith, Robert E.
    Felicelli, Sergio D.
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (5-6) : 1622 - 1637