共 50 条
Coexistence of A- and I-type granites in the Luliang Complex: Tectonic implications for the middle Paleoproterozoic Trans-North China Orogen, North China Craton
被引:5
|作者:
Liu, Chaohui
[1
,2
]
Zhao, Guochun
[3
]
Liu, Fulai
[1
,2
]
Xu, Wang
[1
]
机构:
[1] Chinese Acad Geol Sci, Inst Geol, Beijing 100037, Peoples R China
[2] Minist Nat Resources, Key Lab Deep Earth Dynam, Beijing 100037, Peoples R China
[3] Univ Hong Kong, Dept Earth Sci, Pokfulam Rd, Hong Kong, Peoples R China
来源:
基金:
美国国家科学基金会;
关键词:
North China Craton;
Trans-North China orogen;
Luliang Complex;
A-type granite;
Zircon U-Pb and Lu-Hf isotope;
Geochemistry;
A-TYPE GRANITES;
ZIRCON U-PB;
GEOCHEMICAL CONSTRAINTS;
GUANDISHAN GRANITOIDS;
ZANHUANG COMPLEX;
CRUSTAL GROWTH;
FUPING COMPLEX;
JIEHEKOU GROUP;
YEJISHAN GROUP;
2.1-2.0;
GA;
D O I:
10.1016/j.lithos.2020.105875
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
The Chijianling-Guandishan pluton is distributed in the western and southeastern parts of the Luliang Complex, which is located in the middle segment of the Trans-North China Orogen, the North China Craton. The main rock types of the pluton are medium to fine-grained dioritic and granitic gneisses metamorphosed to the lower amphibolite facies. Most dioritic and granitic samples display similar zircon U-Pb concordia ages of 2216 +/- 5 Ma to 2110 +/- 23 Ma, but only one dioritic sample at the western margin gives a younger age of 2069 +/- 5 Ma. Zircon Hf(t) values of the older and younger diorites vary from -0.27 to +4.11 and + 5.35 to +7.99, respectively. The granites exhibit a large range of SiO2 contents (65.5-76.0 wt%), relatively high Fe-number (0.69-0.96), and metaluminous to weakly peraluminous character. Two-thirds of the granites show typical geochemical affinities of A-type granitoids (Group I), such as high FeOt contents (2.0-7.4 wt%), MALI (Na2O + K2O - CaO) indexes (4.9-10), 10000*(Ga/Al) ratios (2.8-6.4) and Zr + Nb + Ce + Y contents (394 to 1154 ppm), whereas the remaining granites (Group II) display I-type granitic features. Also, Group I granites have zircon Hf(t) values of - 1.08 to +3.15 and whole-rock Nd-143/Nd-144 initial ratios of 0.509823-0.509947, which are indistinguishable from those of the older diorites. However, some Group II granites have more enriched zircon Hf(t) values of - 5.33 to -0.58 and whole-rock Nd-143/Nd-144 initial ratios of 0.509790 and 0.509793. Based on close association with contemporaneous mafic rocks with alkaline/peralkaline and ferroan affinities, continuously geochemically variations, and identical isotopic components, we infer that the A-type granites are the extreme differentiation (ca. 90%) products of the mafic rocks, which is also proved by trace element modeling. On the other way, Group II granitic magma was produced by the assimilation (up to 40%) of the ca. 2.50 Ga Yunzhongshan pluton with the A-type magmas. Together with the middle Paleoproterozoic transgressive deposit formations, mafic dykes, and A-type granites in the middle segment of the TNCO, our findings suggest a tectonic switching model similar to modern accretionary orogen. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:18
相关论文