Clustering and Classification of Effective Diabetes Diagnosis: Computational Intelligence Techniques Using PCA with kNN

被引:3
|
作者
Mangathayaru, Nimmala [1 ]
Bai, B. Mathura [1 ]
Srikanth, Panigrahi [1 ]
机构
[1] VNR Vignana Jyothi Inst Engn & Technol, Dept Informat Technol, Hyderabad 500090, Telangana, India
关键词
Diabetes disease; Clustering; Classification; Distribution function and PCA with kNN; PREDICTION; ENSEMBLE;
D O I
10.1007/978-3-319-63673-3_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fourth leading disease in the world today is Diabetes and there are number of challenges to predict and identify the disease. Data mining proposes effective approaches to identify the diabetic patients. This paper proposes clustering and classification of effective diabetes diagnosis based on computational intelligence techniques using PCA with kNN. Diabetes disease data is used to identify feature of clusters. Diabetes disease diagnosis proposes novel distribution function applied to classify each patient. This proposed procedure defines clusters and similarity measure based on classifying with each cluster using computational intelligence techniques. PCA using diabetes disease data for dimensionality reduction. Novel similarity measure is proposed in kNN for classification. Accuracy measures are computed for each patient.
引用
收藏
页码:426 / 440
页数:15
相关论文
共 50 条
  • [1] Text Classification using Clustering Techniques and PCA
    Kaur, Manpreet
    Bansal, Meenakshi
    2016 FOURTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2016, : 642 - 646
  • [2] Classification of Diagnosis-Related Groups using Computational Intelligence Techniques.
    Santana-Velasquez, Angelower
    Freddy Duitama, John M.
    Arias-Londono, Julian D.
    2020 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (IEEE COLCACI 2020), 2020,
  • [3] Classification of epilepsy using computational intelligence techniques
    Qazi, Khurram, I
    Lam, H. K.
    Xiao, Bo
    Ouyang, Gaoxiang
    Yin, Xunhe
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (02) : 137 - +
  • [4] Classification of Epilepsy using Computational Intelligence Techniques
    Tolebi, Gulnur
    Kuzhaniyazova, Albina
    Abdinurova, Nazgul
    2015 TWELVE INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTER AND COMPUTATION (ICECCO), 2015, : 131 - 134
  • [5] Prediction of Diabetes Complications Using Computational Intelligence Techniques
    Alghamdi, Turki
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [6] Hepatitis C Diagnosis Using Computational Intelligence Techniques
    Cedolin, Michele
    Genevois, Mujde Erol
    Canbulat, Zeynep
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 29 - 36
  • [7] DC Equipment Identification using K-means Clustering and kNN Classification Techniques
    Quek, Y. T.
    Woo, W. L.
    Logenthiran, T.
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 777 - 780
  • [8] Preemptive Diagnosis of Colorectal Cancer Using Computational Intelligence Techniques
    Olatunji, Sunday O.
    Aleissa, Shahd
    Alakkas, Maryam
    Albugeaey, Zainab
    Alshelaly, Hneen
    Alzubaidi, Thuraya
    Ahmed, Mohammed Imran Basheer
    Farooqui, Mehwash
    PROCEEDINGS 2024 SEVENTH INTERNATIONAL WOMEN IN DATA SCIENCE CONFERENCE AT PRINCE SULTAN UNIVERSITY, WIDS-PSU 2024, 2024, : 162 - 167
  • [9] Preemptive Diagnosis of Schizophrenia Disease Using Computational Intelligence Techniques
    Almutairi, Mona
    Alhamad, Nada
    Alyami, Albandari
    Alshubbar, Zainab
    Alfayez, Heela
    Al-Akkas, Noor
    Alhiyafi, Jamal A.
    Olatunji, Sunday O.
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 2019,
  • [10] Classification techniques based on methods of computational intelligence
    Grauel, A
    Renners, I
    Saavedra, E
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 82 - 89