A simple method to estimate prediction intervals and predictive distributions: Summarizing meta-analyses beyond means and confidence intervals

被引:31
|
作者
Wang, Chia-Chun [1 ,2 ,3 ]
Lee, Wen-Chung [3 ,4 ]
机构
[1] Natl Taiwan Univ Hosp, Dept Oncol, Div Radiat Oncol, Taipei, Taiwan
[2] Natl Taiwan Univ, Canc Ctr, Taipei, Taiwan
[3] Natl Taiwan Univ, Coll Publ Hlth, Inst Epidemiol & Prevent Med, Rm 536,17 Xuzhou Rd, Taipei 100, Taiwan
[4] Natl Taiwan Univ, Coll Publ Hlth, Innovat & Policy Ctr Populat Hlth & Sustainable E, Taipei, Taiwan
关键词
meta-analysis; normality assumption; prediction interval; predictive distribution; RANDOM-EFFECTS MODELS; VARIANCE ESTIMATORS; HETEROGENEITY; PERFORMANCE; EXPRESSION; EFFICIENCY; VALUES; BAYES; BIAS;
D O I
10.1002/jrsm.1345
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A systematic review and meta-analysis is an important step in evidence synthesis. The current paradigm for meta-analyses requires a presentation of the means under a random-effects model; however, a mean with a confidence interval provides an incomplete summary of the underlying heterogeneity in meta-analysis. Prediction intervals show the range of true effects in future studies and have been advocated to be regularly presented. Most commonly, prediction intervals are estimated assuming that the underlying heterogeneity follows a normal distribution, which is not necessarily appropriate. In this article, we provide a simple method with a ready-to-use spreadsheet file to estimate prediction intervals and predictive distributions nonparametrically. Simulation studies show that this new method can provide approximately unbiased estimates compared with the conventional method. We also illustrate the advantage and real-world significance of this approach with a meta-analysis evaluating the protective effect of vaccination against tuberculosis. The nonparametric predictive distribution provides more information about the shape of the underlying distribution than does the conventional method.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 11 条
  • [1] Meta-analyses: with confidence or prediction intervals?
    Arnaud Chiolero
    Valérie Santschi
    Bernard Burnand
    Robert W. Platt
    Gilles Paradis
    [J]. European Journal of Epidemiology, 2012, 27 : 823 - 825
  • [2] Meta-analyses: with confidence or prediction intervals?
    Chiolero, Arnaud
    Santschi, Valerie
    Burnand, Bernard
    Platt, Robert W.
    Paradis, Gilles
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2012, 27 (10) : 823 - 825
  • [3] Prediction intervals reporting in orthodontic meta-analyses
    Seehra, Jadbinder
    Stonehouse-Smith, Daniel
    Pandis, Nikolaos
    [J]. EUROPEAN JOURNAL OF ORTHODONTICS, 2021, 43 (05) : 596 - 600
  • [4] Beyond the funnel plot: The advantages of Doi plots and prediction intervals in meta-analyses
    Shamim, Muhammad Aaqib
    Dwivedi, Pradeep
    Padhi, Bijaya Kumar
    [J]. ASIAN JOURNAL OF PSYCHIATRY, 2023, 84
  • [5] Empirical assessment of prediction intervals in Cochrane meta-analyses
    Al Amer, Fahad M.
    Lin, Lifeng
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2021, 51 (07)
  • [6] Prediction intervals should be included in meta-analyses published in dentistry
    Faggion, C. M., Jr.
    Menne, Max Clemens
    Pandis, Nikolaos
    [J]. EUROPEAN JOURNAL OF ORAL SCIENCES, 2021, 129 (06)
  • [7] A universal method to obtain prediction intervals for prevalence and rate parameters estimated from meta-analyses
    Schuster, Tibor
    Reyes, Araceli Gonzalez
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 618 - 618
  • [8] A note on the graphical presentation of prediction intervals in random-effects meta-analyses
    Guddat C.
    Grouven U.
    Bender R.
    Skipka G.
    [J]. Systematic Reviews, 1 (1)
  • [9] Evolution of Heterogeneity (I2) Estimates and Their 95% Confidence Intervals in Large Meta-Analyses
    Thorlund, Kristian
    Imberger, Georgina
    Johnston, Bradley C.
    Walsh, Michael
    Awad, Tahany
    Thabane, Lehana
    Gluud, Christian
    Devereaux, P. J.
    Wetterslev, Jorn
    [J]. PLOS ONE, 2012, 7 (07):
  • [10] USING PREDICTION INTERVALS FROM RANDOM-EFFECTS META-ANALYSES IN AN ECONOMIC MODEL
    Teljeur, Conor
    O'Neill, Michelle
    Moran, Patrick
    Murphy, Linda
    Harrington, Patricia
    Ryan, Mairin
    Flattery, Martin
    [J]. INTERNATIONAL JOURNAL OF TECHNOLOGY ASSESSMENT IN HEALTH CARE, 2014, 30 (01) : 44 - 49