Study of a nonlinear Kirchhoff equation with non-homogeneous material

被引:54
|
作者
Figueiredo, Giovany M. [1 ]
Morales-Rodrigo, Cristian [2 ]
Santos Junior, Joao R. [1 ]
Suarez, Antonio [2 ]
机构
[1] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
[2] Univ Seville, Fac Matemat, Dpto Ecuaciones Diferenciales & Anal Numer, Seville 41012, Spain
关键词
Kirchhoff equation; Non-homogeneous material; Bifurcation methods; SIGN-CHANGING SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; R-N; MULTIPLE SOLUTIONS; CRITICAL GROWTH; ELLIPTIC EQUATION; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jmaa.2014.02.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a non-homogeneous elliptic Kirchhoff equation with nonlinear reaction term. We analyze the existence and uniqueness of positive solution. The main novelty is the inclusion of non-homogeneous term making the problem without a variational structure. We use mainly bifurcation arguments to get the results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:597 / 608
页数:12
相关论文
共 50 条
  • [1] The uniqueness of some singular Kirchhoff equations with non-homogeneous material
    Yan, Baoqiang
    O'Regan, Donal
    Agarwal, Ravi P.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [2] On Solution of Nonlinear Cubic Non-Homogeneous Schrodinger Equation
    El-Tawil, Magdy A.
    Nasr, Sherif E.
    El Zoheiry, H.
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 42 - +
  • [4] A non-homogeneous Hill's equation
    Shadman, D
    Mehri, B
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) : 68 - 75
  • [5] Non-homogeneous wave equation on a cone
    Olver, Sheehan
    Xu, Yuan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (5-8) : 604 - 619
  • [6] Infinite number of solutions for some elliptic eigenvalue problems of Kirchhoff-type with non-homogeneous material
    Yan, Baoqiang
    O'Regan, Donal
    Agarwal, Ravi P.
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [7] Infinite number of solutions for some elliptic eigenvalue problems of Kirchhoff-type with non-homogeneous material
    Baoqiang Yan
    Donal O’Regan
    Ravi P. Agarwal
    Boundary Value Problems, 2021
  • [8] On a non-homogeneous and non-linear heat equation
    Bisconti, Luca
    Franca, Matteo
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 12 (04) : 289 - 320
  • [9] Optimal control of non-homogeneous wave equation
    Sklyar, Grigory M.
    Szkibiel, Grzegorz
    2011 16TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, 2011, : 393 - 397
  • [10] Vlasov equation with non-homogeneous boundary conditions
    Mancini, S
    Totaro, S
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (07) : 601 - 614