We develop a direct numerical method to study the general problem of nonlinear interactions of surface/interfacial waves with variable bottom topography in a two-layer density stratified fluid. We extend a powerful high-order spectral (HOS) method for nonlinear gravity wave dynamics in a homogeneous fluid to the case of a two-layer fluid over non-uniform bottom. The method is capable of capturing the nonlinear interactions among large number of surface/interfacial wave mode and bottom ripple components up to an arbitrary high order. The method preserves exponential convergence with respect to the number of modes of the original HOS and the (approximately) linear effort with respect to mode number and interaction order. The method is validated through systematic convergence tests and comparison to a semi-analytic solution we obtain for an exact nonlinear Stokes waves on a two-layer fluid (in uniform depth). We apply the numerical method to the three classes of generalized Bragg resonances studied in Alam, Liu & Yue (J. Fluid Mech., vol. 624, 2009, p. 225), and compare the perturbation predictions obtained there with the direct simulation results. An important finding is possibly the important effect of even higher-order nonlinear interactions not accounted for in the leading-order perturbation analyses. To illustrate the efficacy of the numerical method to the general problem, we consider a somewhat more complicated case involving two incident waves and three bottom ripple components with wavenumbers that lead to the possibility of multiple Bragg resonances. It is shown that the ensuing multiple (near) resonant interactions result in the generation of multiple new transmitted/reflected waves that fill a broad wavenumber band eventually leading to the loss of order and chaotic motion.
机构:
China Ship Sci Res Ctr, Wuxi 214082, Peoples R China
Shanghai Oriental Maritime Engn Technol Co Ltd, Shanghai 200011, Peoples R ChinaChina Ship Sci Res Ctr, Wuxi 214082, Peoples R China
Lin, Qiang
Meng, Qing-rui
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R ChinaChina Ship Sci Res Ctr, Wuxi 214082, Peoples R China
Meng, Qing-rui
Lu, Dong-qiang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R ChinaChina Ship Sci Res Ctr, Wuxi 214082, Peoples R China
机构:
Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, MalaysiaUniv Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, Malaysia
Hooi, M. H.
Tiong, W. K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, MalaysiaUniv Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, Malaysia
Tiong, W. K.
Tay, K. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tun Hussein Onn Malaysia, Fac Elect & Elect, Dept Commun Engn, Parit Raja 86400, Johor, MalaysiaUniv Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, Malaysia
Tay, K. G.
Chiew, K. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, MalaysiaUniv Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, Malaysia
Chiew, K. L.
Sze, S. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, MalaysiaUniv Malaysia Sarawak, Fac Comp Sci & Informat Technol, Kota Samarahan 94300, Sarawak, Malaysia
机构:
Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108
Maiti P.
Mandal B.N.
论文数: 0引用数: 0
h-index: 0
机构:
Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108