Strength Prediction Models for PVA Fiber-Reinforced High-Strength Concrete

被引:24
|
作者
Nuruddin, Muhd. Fadhil [1 ]
Khan, Sadaqat Ullah [1 ]
Shafiq, Nasir [1 ]
Ayub, Tehmina [1 ]
机构
[1] Univ Teknol Petronas, Dept Civil Engn, Tronoh 31750, Perak, Malaysia
关键词
High-strength concrete; Poly-vinyl alcohol (PVA) fibers; Metakaolin; Compressive strength; Splitting tensile strength; Modulus of rupture; Strength models; STEEL-FIBER; MECHANICAL-PROPERTIES; METAKAOLIN; STRESS; STRAIN;
D O I
10.1061/(ASCE)MT.1943-5533.0001279
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
During the last decade, synthetic fibers have been used widely in the structure application; however, the strength models of synthetic fiber-reinforced concrete are not available, as most of the models have been proposed for steel fiber-reinforced concrete only. Extensive experimental investigation has been conducted on poly-vinyl alcohol (PVA) fiber-reinforced high-strength concrete to develop the strength model based on multiple linear regressions analysis through least square error. Regression models have been obtained for the different responses of concrete as a function of process variables, i.e., compressive strength of concrete, fiber matrix interface, and fraction of metakaolin (MK) as cement-replacing material. A total of 50 mixes of concrete have been examined using metakaolin of 0, 5, 10, 15, and 20% by weight of cement and PVA fibers of aspect ratio 45, 60, 90, and 120 with volume fraction of 0, 1, 2, and 3%. Five mixes without PVA fiber have been used as control mixes. For each mix, the compressive strength, splitting tensile strength, modulus of rupture, and modulus of elasticity have been determined at the age of 7, 28, 56, and 90 days. Moreover, models have been compared with the artificial neural network and existing predictive models of steel fiber-reinforced concrete. The existing models of steel fiber-reinforced concrete have not been found to be applicable to synthetic fiber-reinforced concrete. However, the proposed models are closely fit to the experimental results, and the results are comparative with the artificial neural network approach. (C) 2015 American Society of Civil Engineers.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Strength and ductility of fiber-reinforced high-strength concrete columns
    Foster, SJ
    Attard, MM
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2001, 127 (01): : 28 - 34
  • [2] PROPERTIES OF FIBER-REINFORCED HIGH-STRENGTH SEMILIGHTWEIGHT CONCRETE
    BALAGURU, P
    DIPSIA, MG
    ACI MATERIALS JOURNAL, 1993, 90 (05) : 399 - 405
  • [3] High-Strength Fiber-Reinforced Concrete Beam-Columns with High-Strength Steel
    Ibarra, Luis
    Bishaw, Birhanu
    ACI STRUCTURAL JOURNAL, 2016, 113 (01) : 147 - 156
  • [4] A Comparative Experimental Study on the Flexural Behavior of High-Strength Fiber-Reinforced Concrete and High-Strength Concrete Beams
    Yang, In-Hwan
    Joh, Changbin
    Kim, Kyoung-Chul
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [5] FLEXURAL BEHAVIOR OF HIGH-STRENGTH FIBER-REINFORCED CONCRETE BEAMS
    ASHOUR, SA
    WAFA, FF
    ACI STRUCTURAL JOURNAL, 1993, 90 (03) : 279 - 287
  • [6] Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete
    Song, PS
    Wu, JC
    Hwang, S
    Sheu, BC
    CEMENT AND CONCRETE RESEARCH, 2005, 35 (02) : 393 - 399
  • [7] Mechanical properties of high-strength steel fiber-reinforced concrete
    Song, PS
    Hwang, S
    CONSTRUCTION AND BUILDING MATERIALS, 2004, 18 (09) : 669 - 673
  • [8] Abrasion and Maintenance of High-Strength Fiber-Reinforced Pervious Concrete
    Lee, Ming-Gin
    Wang, Yung-Chih
    Wang, Wei-Chien
    Hsieh, Yi-Cheng
    BUILDINGS, 2024, 14 (01)
  • [9] Mechanical properties of jute fiber-reinforced high-strength concrete
    Zhang, Tiezhi
    Yin, Yong
    Gong, Yaqi
    Wang, Lijiu
    STRUCTURAL CONCRETE, 2020, 21 (02) : 703 - 712
  • [10] Investigation on the flexural behavior of high-strength fiber-reinforced concrete
    de Almeida, Ricardo Laguardia Justen
    Parsekian, Guilherme Aris
    Carnio, Marco Antonio
    STRUCTURAL CONCRETE, 2024,