A SQUID Magnetometer-Based Readout System for an Inertial Navigation System

被引:3
|
作者
Rzhevskiy, A. V. [1 ,2 ]
Snigirev, O. V. [1 ,3 ,4 ]
Maslennikov, Yu. V. [5 ]
Slobodchikov, V. Yu. [6 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
[2] Moscow State Tech Univ, Moscow 105005, Russia
[3] Moscow MV Lomonosov State Univ, Quantum Technol Ctr, Moscow 119991, Russia
[4] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
[5] Russian Acad Sci, Inst Terr Magnetism Ionosphere & Radio Wave Propa, Troitsk 108840, Russia
[6] Russian Acad Sci, Inst Radioengn & Elect, Moscow 125009, Russia
关键词
SQUID; superconductivity; inertial navigation systems;
D O I
10.3103/S0027134920040104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The characteristics of a SQUID magnetometer-based readout system for a superconducting gyroscope-based inertial navigation system (INS) are investigated. The transformation function of the rotation angle of the gyroscope simulator to the voltage at the magnetometer output with a value close to 6.5 mV/deg is calculated and measured. This value corresponds to 4.1 V/deg for a superconducting gyroscope with a rotor diameter of 30 mm. Zero voltage drifts with a duration of up to 8 h are measured on the SQUID magnetometer. A drift of 10(-6) deg/h was detected.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 50 条
  • [1] A SQUID Magnetometer-Based Readout System for an Inertial Navigation System
    A. V. Rzhevskiy
    O. V. Snigirev
    Yu. V. Maslennikov
    V. Yu. Slobodchikov
    Moscow University Physics Bulletin, 2020, 75 : 336 - 341
  • [2] A SQUID Application to Earth-based Inertial Navigation System
    Panov, V. I.
    Snigirev, O. V.
    Rzhevsky, A. V.
    Maslennikov, Yu. V.
    Svobodtchikov, V. Yu.
    Khanin, V. V.
    Svyatjy, V. V.
    Levin, S. L.
    Litmanovich, Yu. A.
    Chesnokov, P. A.
    2017 16TH INTERNATIONAL SUPERCONDUCTIVE ELECTRONICS CONFERENCE (ISEC), 2017,
  • [3] The Conjunctive Compensation Method Based on Inertial Navigation System and Fluxgate Magnetometer
    Chen, Bingyang
    Zhang, Ke
    Yan, Bin
    Zhu, Wanhua
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [4] On magnetometer heading updates for inertial pedestrian navigation system
    Abdulrahim K.
    Seman K.
    Othman M.
    Md Shuib F.M.
    Moore T.
    Hide C.
    Hill C.
    Gyroscopy and Navigation, 2014, 5 (3) : 145 - 152
  • [5] AN IMU/MAGNETOMETER-BASED INDOOR POSITIONING SYSTEM USING KALMAN FILTERING
    Hellmers, Hendrik
    Norrdine, Abdelmoumen
    Blankenbach, Joerg
    Eichhorn, Andreas
    2013 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2013,
  • [6] A fault tolerant filter applied on magnetometer-based autonomous satellite navigation
    Rong, Siyuan
    Mu, Rongjun
    Cui, Naigang
    ISSCAA 2006: 1ST INTERNATIONAL SYMPOSIUM ON SYSTEMS AND CONTROL IN AEROSPACE AND ASTRONAUTICS, VOLS 1AND 2, 2006, : 597 - +
  • [7] A Single-Axis Atomic Magnetometer-Based Mouse Magnetocardiography Measurement System
    Sun, Yongze
    Wang, Xixi
    Zhou, Yuanrui
    Qin, Jianan
    Bai, Dongxu
    Wang, Yanzhang
    Zhou, Zhijian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] A magnetometer-based method for in-situ syncing of wearable inertial measurement units
    Gilbert, Thomas J.
    Lin, Zexiao
    Day, Sally
    Hamilton, Antonia F. de C.
    Ward, Jamie A.
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [9] Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints
    Won, Daehee
    Ahn, Jongsun
    Sung, Sangkyung
    Heo, Moonbeom
    Im, Sung-Hyuck
    Lee, Young Jae
    JOURNAL OF SENSORS, 2015, 2015
  • [10] 3-CHANNEL DOUBLE RELAXATION OSCILLATION SQUID MAGNETOMETER SYSTEM WITH SIMPLE READOUT ELECTRONICS
    LEE, YH
    KIM, JM
    KWON, HC
    PARK, YK
    PARK, JC
    VANDUUREN, MJ
    ADELERHOF, DJ
    FLOKSTRA, J
    ROGALLA, H
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995, 5 (02) : 2156 - 2159