An existence result and evolutionary -convergence for perturbed gradient systems

被引:0
|
作者
Bacho, Aras [1 ]
Emmrich, Etienne [1 ]
Mielke, Alexander [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Math, Sekretariat MA 5-3,Str 17 Juni 136, D-10623 Berlin, Germany
[2] Weierstrass Inst Angew Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[3] Humboldt Univ, Inst Math, Rudower Chausee 25, D-12489 Berlin, Germany
关键词
Doubly nonlinear equations; Generalized and perturbed gradient flows; Evolutionary Gamma convergence; Homogenization of reaction-diffusion systems; GAMMA-CONVERGENCE;
D O I
10.1007/s00028-019-00484-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial-value problem for the perturbed gradient flow with a perturbation B in a Banach space V is investigated, where the dissipation potential u:V[0,+) and the energy functional Et:V(-,+] are non-smooth and supposed to be convex and nonconvex, respectively. The perturbation B:[0,T]xVV,(t,v)?B(t,v) is assumed to be continuous and satisfies a growth condition. Under suitable assumptions on the dissipation potential and the energy functional, existence of strong solutions is shown by proving convergence of a semi-implicit discretization scheme with a variational approximation technique. Moreover, for perturbed gradient systems (V,E epsilon,epsilon,B epsilon) depending on a small parameter epsilon>0, we develop a theory of evolutionary -convergence in terms of the suitable convergences of E epsilon, epsilon, and B epsilon to the limit system (V,epsilon(0),Psi(0),B-0).
引用
收藏
页码:479 / 522
页数:44
相关论文
共 50 条
  • [1] On Evolutionary Γ-Convergence for Gradient Systems
    Mielke, Alexander
    MACROSCOPIC AND LARGE SCALE PHENOMENA: COARSE GRAINING, MEAN FIELD LIMITS AND ERGODICITY, 2016, 3 : 187 - 249
  • [2] Existence results for some elliptic systems with perturbed gradient
    Temghart, Said Ait
    El Hammar, Hasnae
    Allalou, Chakir
    Hilal, Khalid
    FILOMAT, 2023, 37 (20) : 6905 - 6915
  • [3] EXISTENCE OF SOLUTIONS FOR SOME ELLIPTIC SYSTEMS WITH PERTURBED GRADIENT
    El Hammar, Hasnae
    Temghart, Said Ait
    Allalou, Chakir
    Melliani, Said
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2024, 92 : 101 - 116
  • [4] A convergence result for mountain pass periodic solutions of perturbed Hamiltonian systems
    Izydorek, Marek
    Janczewska, Joanna
    Soares, Pedro
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (06)
  • [5] Evolutionary Γ-convergence of gradient systems modeling slow and fast chemical reactions
    Disser, Karoline
    Liero, Matthias
    Zinsl, Jonathan
    NONLINEARITY, 2018, 31 (08) : 3689 - 3706
  • [6] An existence result for gradient-type systems with a nondifferentiable term on unbounded strips
    Kristály, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (01) : 186 - 204
  • [7] On an existence result for a class of (p, q)-gradient elliptic systems via a fibering method
    Velin, Jean
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) : 6009 - 6033
  • [8] A CONVERGENCE AND EXISTENCE RESULT FOR DIFFERENTIAL-ALGEBRAIC INCLUSIONS
    NIEPAGE, HD
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (11-12) : 1221 - 1249
  • [9] GLOBAL CONVERGENCE RESULT FOR CONJUGATE-GRADIENT METHODS
    HU, YF
    STOREY, C
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 71 (02) : 399 - 405
  • [10] A Note on Global Convergence Result for Conjugate Gradient Methods
    BAI Yan qin Department of Mathematics
    Advances in Manufacturing, 2001, (01) : 15 - 19