Nonlinear Superposition Formulas for Two Classes of Non-holonomic Systems

被引:3
|
作者
Menini, Laura [1 ]
Tornambe, Antonio [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, I-00133 Rome, Italy
关键词
Nonlinear superposition principle; Non-holonomic systems; Lie systems; DIFFERENTIAL-EQUATIONS; STABILITY ANALYSIS; PLANAR SYSTEMS; LIE; THEOREM; MOTION; RULES;
D O I
10.1007/s10883-014-9225-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to apply the nonlinear superposition principle to some non-holonomic systems, in particular, those in chained and power forms, which are used to represent the kinematic equations of various non-holonomic wheeled vehicles. The existence of nonlinear superposition formulas is studied on the basis of Lie algebraic analysis. First, it is shown that nonlinear superposition formulas can be constructed using the knowledge of n + 1 particular solutions, using the affine structure of a system in chained form and the fact that a system in power form is diffeomorphic to a system in chained form. Secondly, using the notion of first integral, it is shown that only one particular solution is sufficient.
引用
收藏
页码:365 / 382
页数:18
相关论文
共 50 条
  • [1] Nonlinear Superposition Formulas for Two Classes of Non-holonomic Systems
    Laura Menini
    Antonio Tornambè
    Journal of Dynamical and Control Systems, 2014, 20 : 365 - 382
  • [2] EQUIVALENCE CLASSES OF NON-HOLONOMIC COORDINATES
    NOVOSIOLOV, VS
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1981, (02): : 82 - 85
  • [3] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [4] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    Letters in Mathematical Physics, 2008, 84 : 15 - 30
  • [6] On non-holonomic systems equilibria
    Kozlov, V.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1994, (03): : 74 - 79
  • [7] On generalized non-holonomic systems
    Balseiro, P.
    Solomin, J. E.
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (01) : 15 - 30
  • [8] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    INOSTROZA, ROR
    HADRONIC JOURNAL, 1984, 7 (05): : 1134 - 1157
  • [9] On the geometry of non-holonomic Lagrangian systems
    deLeon, M
    deDiego, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) : 3389 - 3414
  • [10] Variational non-holonomic systems in physics
    Czudková, L
    Musilová, J
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 131 - 140