Quantifying variations in shortwave aerosol-cloud-radiation interactions using local meteorology and cloud state constraints

被引:25
|
作者
Douglas, Alyson [1 ]
L'Ecuyer, Tristan [1 ]
机构
[1] Univ Wisconsin, Atmospher & Ocean Sci, Madison, WI 53706 USA
关键词
LARGE-EDDY SIMULATION; BOUNDARY-LAYER; STRATOCUMULUS RESPONSE; ALBEDO; MODEL; PRODUCTS; MICROPHYSICS; GROWTH; DEPTH;
D O I
10.5194/acp-19-6251-2019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
While many studies have tried to quantify the sign and the magnitude of the warm marine cloud response to aerosol loading, both remain uncertain, owing to the multitude of factors that modulate microphysical and thermodynamic processes within the cloud. Constraining aerosol- cloud interactions using the local meteorology and cloud liquid water may offer a way to account for covarying influences, potentially increasing our confidence in observational estimates of warm cloud indirect effects. A total of 4 years of collocated satellite observations from the NASA A-Train constellation, combined with reanalysis from MERRA-2, are used to partition marine warm clouds into regimes based on stability, the free atmospheric relative humidity, and liquid water path. Organizing the sizable number of satellite observations into regimes is shown to minimize the covariance between the environment or liquid water path and the indirect effect. Controlling for local meteorology and cloud state mitigates artificial signals and reveals substantial variance in both the sign and magnitude of the cloud radiative response, including regions where clouds become systematically darker with increased aerosol concentration in dry, unstable environments. A darkening effect is evident even under the most stringent of constraints. These results suggest it is not meaningful to report a single global sensitivity of cloud radiative effect to aerosol. To the contrary, we find the sensitivity can range from - 0.46 to 0.11 Wm(-2) In(Al)(-1) regionally.
引用
收藏
页码:6251 / 6268
页数:18
相关论文
共 50 条
  • [1] Quantifying components of aerosol-cloud-radiation interactions in climate models
    Zelinka, Mark D.
    Andrews, Timothy
    Forster, Piers M.
    Taylor, Karl E.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (12) : 7599 - 7615
  • [2] Analysis of Climate Change Caused by Aerosol-Cloud-Radiation Interaction
    Nakata, M.
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XXIII, 2018, 10786
  • [3] Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions
    Tao, Zhining
    Yu, Hongbin
    Chin, Mian
    ATMOSPHERIC ENVIRONMENT, 2016, 125 : 48 - 60
  • [4] Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data
    Gu, Y.
    Liou, K. N.
    Jiang, J. H.
    Su, H.
    Liu, X.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (04) : 1667 - 1679
  • [5] Assessment of aerosol-cloud-radiation correlations in satellite observations, climate models and reanalysis
    Bender, F. A. -M.
    Frey, L.
    McCoy, D. T.
    Grosvenor, D. P.
    Mohrmann, J. K.
    CLIMATE DYNAMICS, 2019, 52 (7-8) : 4371 - 4392
  • [6] An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the southeast Atlantic basin
    Redemann, Jens
    Wood, Robert
    Zuidema, Paquita
    Doherty, Sarah J.
    Luna, Bernadette
    LeBlanc, Samuel E.
    Diamond, Michael S.
    Shinozuka, Yohei
    Chang, Ian Y.
    Ueyama, Rei
    Pfister, Leonhard
    Ryoo, Ju-Mee
    Dobracki, Amie N.
    da Silva, Arlindo M.
    Longo, Karla M.
    Kacenelenbogen, Meloe S.
    Flynn, Connor J.
    Pistone, Kristina
    Knox, Nichola M.
    Piketh, Stuart J.
    Haywood, James M.
    Formenti, Paola
    Mallet, Marc
    Stier, Philip
    Ackerman, Andrew S.
    Bauer, Susanne E.
    Fridlind, Ann M.
    Carmichael, Gregory R.
    Saide, Pablo E.
    Ferrada, Gonzalo A.
    Howell, Steven G.
    Freitag, Steffen
    Cairns, Brian
    Holben, Brent N.
    Knobelspiesse, Kirk D.
    Tanelli, Simone
    L'Ecuyer, Tristan S.
    Dzambo, Andrew M.
    Sy, Ousmane O.
    McFarquhar, Greg M.
    Poellot, Michael R.
    Gupta, Siddhant
    O'Brien, Joseph R.
    Nenes, Athanasios
    Kacarab, Mary
    Wong, Jenny P. S.
    Small-Griswold, Jennifer D.
    Thornhill, Kenneth L.
    Noone, David
    Podolske, James R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (03) : 1507 - 1563
  • [7] Effect of aerosol on the clear-sky radiation regime as derived from Zvenigorod aerosol-cloud-radiation experiments
    Gorchakova, IA
    Mokhov, II
    Rublev, AN
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2005, 41 (04) : 448 - 460
  • [8] Aerosol-cloud-radiation interaction during Saharan dust episodes: the dusty cirrus puzzle
    Seifert, Axel
    Bachmann, Vanessa
    Filipitsch, Florian
    Foerstner, Jochen
    Grams, Christian M.
    Hoshyaripour, Gholam Ali
    Quinting, Julian
    Rohde, Anika
    Vogel, Heike
    Wagner, Annette
    Vogel, Bernhard
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (11) : 6409 - 6430
  • [9] Simulation of arctic diamond dust, ice fog, and thin stratus using an explicit aerosol-cloud-radiation model
    Girard, E
    Blanchet, JP
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2001, 58 (10) : 1199 - 1221
  • [10] The Role of Aerosol-Cloud-Radiation Interactions in Regional Air Quality-A NU-WRF Study over the United States
    Tao, Zhining
    Yu, Hongbin
    Chin, Mian
    ATMOSPHERE, 2015, 6 (08) : 1045 - 1068